Real-time exhaled breath analysis in patients with cystic fibrosis and controls

Real-time exhaled breath analysis in patients with cystic fibrosis and controls

T. Gaisl, L. Bregy, N. Stebler, M. T. Gaugg, T. Bruderer, D. García-Gómez, A, Moeller,  F. Singer,  E. I.  Schwarz, C. Benden, P. M-L Sinues, R. Zenobi, M. Kohler

We aimed at defining profiles of volatile organic compounds in exhaled breath from patients with cystic fibrosis (CF) using a novel real-time mass spectrometry technique. In this prospective matched case-control study, 30 patients with CF, and 30 healthy control 4 subjects were matched one-to-one according to age, gender, and smoking state.

Translating secondary electrospray ionization–high-resolution mass spectrometry to the clinical environment

Translating secondary electrospray ionization–high-resolution mass spectrometry to the clinical environment

K. D. Singh, G. Vidal-de-Miguel, M. T.s Gaugg, A. J. Ibañez, R. Zenobi, M. Kohler, U. Frey and P. M-L Sinues

While there has been progress in making use of breath tests to guide clinical decision making, the full potential of exhaled breath analysis still remains to be exploited. Here we summarize some of the reasons why this is the case, what we have done so far to overcome some of the existing obstacles, and our vision of how we think breath analysis will play a more prominent role …

Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath

Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath

L. Bregya, Y Nussbaumer-Ochsnerb, P. M-L Sinues, D. García-Gómez, Y. Suter, T. Gaisl, N. Stebler, M. T. Gaugg, M. Kohler, R. Zenobi

New mass spectrometry (MS) techniques analysing exhaled breath have the potential to better define airway diseases. Here, we present our work to profile the volatile organic compounds (VOCs) in exhaled breath from patients with chronic obstructive pulmonary disease (COPD), using real-time MS, and relate this disease-specific breath profile to functional disease markers …

METHOD OF DETECTING COPD BY MASS SPECTROMETRY

METHOD OF DETECTING COPD BY MASS SPECTROMETRY

L. Bregya, D. García-Gómez, M. Kohler, Y Nussbaumer-Ochsnerb, P. M-L Sinues, Y. Suter, R. Zenobi, J. Schmitz

The present invention provides a method for determining whether a patient suffers from COPD, said method comprising the step of: a. providing at a sample comprising, or consisting of, exhaled breath of said patient to an ionization chamber of a mass spectrometer; b. simultaneously determining the presence, absence or relative concentration of at least two metabolites in said sample using …

Comprehensive Real-Time Analysis of the Yeast Volatilome

Comprehensive Real-Time Analysis of the Yeast Volatilome

A. Tejero-Rioseras, D. Garcia-Gomez, B. E. Ebert, L. M. Blank, A. J. Ibanez and P. M-L Sinues

While yeast is one of the most studied organisms, its intricate biology remains to be fully mapped and understood. This is especially the case when it comes to capture rapid, in vivo fluctuations of metabolite levels. According to the authors, the results suggest that a large number of metabolites produced by yeast from glucose neither are reported in the literature nor are their biochemical origins deciphered.

Metabolic effects of inhaled salbutamol determined by exhaled breath analysis

Metabolic effects of inhaled salbutamol determined by exhaled breath analysis

M. T. Gaugg, A. Engler, Y. Nussbaumer-Ochsner, L. Bregy, A. S Stöberl, T. Gaisl, T. Bruderer, R. Zenobi, M. Kohler and P. M-L Sinues

The authors explore whether real-time breath research & analysis by SESI-HRMS is suitable to monitor changes at the metabolic level due to inhaling bronchodilator medication. The experimental results strengthen the notion that certain  biochemical processes can be monitored.

Mass-spectrometric detection of omega-oxidation products of aliphatic fatty acids in exhaled breath

Mass-spectrometric detection of omega-oxidation products of aliphatic fatty acids in exhaled breath

M. T. Gaugg, T. Bruderer, N. Nowak, L. Eiffert, P. M-L Sinues, M. Kohler, R. Zenobi

Omega-oxidation is a fatty acid degradation pathway that can occur alternatively to the dominant b-oxidation. The dysregulation of fatty acid oxidation has been related with a variety of diseases, termed fatty acid oxidation disorders. This work shows evidence for real-time detection in exhaled breath of the complete series of saturated linear w-hydroxyalkanoic acids, w-oxoalkanoic acids and alkanedioic acids with carbon chain lengths of 5-15.

Secondary electrospray ionization proceeds via gas-phase chemical ionization

Secondary electrospray ionization proceeds via gas-phase chemical ionization

A. T. Rioseras, M. T. Gaugg and P. M-L Sinues

Our main goal was to gain further insights into the mechanism by which gas-phase analytes are ionized by interaction with plumes of electrospray solvents. We exposed target vapors to electrosprays of either water or deuterated water and mass analyzed them …

SESI-MS feasibility study with infants and young children for early detection of cystic fibrosis inflammation and infection

SESI-MS feasibility study with infants and young children for early detection of cystic fibrosis inflammation and infection

T. Bruderer, A. Baghdasaryan, J. Wyler, M. Kohler, R. Zenobi, A. Möller

Early and often subclinical pulmonary infection and pronounced neutrophilic inflammation are major contributors to CF-related morbidity. There is a causal relationship between high airway neutrophil elastase activity and the development of bronchiectasis. Early detection of disease and disease-associated complications is crucial for implementing timely therapeutic measures …

Targeted on-line breath analysis discriminates COPD patients vs. healthy controls and subjects suffering from asthma

Targeted on-line breath analysis discriminates COPD patients vs. healthy controls and subjects suffering from asthma

Y. Nussbaumer-Ochsner, M.T. Gaugg, L. Bregy, A. Engler, S. A. Sophie, T. Gaisl, P. M-L Sinues, M. Kohler, R. Zenobi

Recently we found markers in exhaled breath discriminating patients with chronic obstructive pulmonary disease (COPD) from healthy controls using real-time mass spectrometry. The aim of this study was to validate the previously found disease specific metabolic profile of COPD in an independent cohort of patients suffering from chronic obstructive lung disease …

Exhaled breath analysis by real-time Mass spectrometry in patients with pulmonary fibrosis

Exhaled breath analysis by real-time Mass spectrometry in patients with pulmonary fibrosis

P. M-L Sinues, Y. Nussbaumer Ochsner, M.T. Gaugg, L. Bregy, A. Engler, R. Zenobi, M. Kohler.

Idiopathic pulmonary fibrosis (IPF) is recognized as a distinct clinical disorder, however, the diagnosis method remains elusive. Metabolic profiling of biopsied tissue specimens has shown promise to gain insights into IPF pathogenesis. In view of this, the authors hypothesized that the analysis of exhaled metabolites may also provide further insights.

On-line breath analysis with secondary electrospray ionization discriminates between COPD patients with and without frequent exacerbations

On-line breath analysis with secondary electrospray ionization discriminates between COPD patients with and without frequent exacerbations

M. T. Gaugg, Y. Nussbaumer-Ochsner, L. Bregy, A. Engler, N. Stebler, T. BrudererP. M-L Sinues, R. Zenobi, M. Kohler

The authors successfully identified metabolic patterns in exhaled breath, which discriminate COPD patients with and without frequent exacerbations. They propose that their findings correlate with the increased oxidative stress caused by elevated nitric oxide production in response to the pulmonary inflammation.

Rapid fingerprinting of grape volatile composition using SESI orbitrap MS: A preliminary study of grape ripening

Rapid fingerprinting of grape volatile composition using SESI orbitrap MS: A preliminary study of grape ripening

R. R. Farrell, J. Fahrentrapp, D. Garcia Gomez, P. M-L Sinuesand R. Zenobi

Even though sugar and acidity measurements are the most common indices of grape maturity, it is well recognized that they provide only basic information related to wine quality. In this preliminary study te authors use SESI-MS to analyze VOCs directly from intact grapes without sample concentration.

Gauging circadian variation in ketamine metabolism by real-time breath analysis

Gauging circadian variation in ketamine metabolism by real-time breath analysis

P. M-L Sinues, M. Kohler, S. A. Brown, R. Zenobi and R. Dallmann

The time-of-day of drug application is an important factor in maximizing efficacy and minimizing toxicity. Real-time in vivo mass spectrometric breath analysis and research of mice was deployed to investigate time-of-day variation in ketamine metabolism. Different production rates of ketamine metabolites were found in opposite circadian phases.

Real-Time Quantification of Amino Acids in the Exhalome by SESI-MS: A Proof-of-Principle Study

Real-Time Quantification of Amino Acids in the Exhalome by SESI-MS: A Proof-of-Principle Study

D. García-Gómez, T. Gaisl, L. Bregy, A. Cremonesi, P. M-L Sinues, M. Kohler, and R. Zenobi

Amino acids are frequently determined in clinical chemistry. However, current analysis methods are time-consuming, invasive, and require sample preparation. The authors hypothesized that plasma concentrations of amino acids can be estimated by measuring their concentrations in exhaled breath.

SESI-HRMS reveals tryptophan pathway metabolites in exhaled human breath

SESI-HRMS reveals tryptophan pathway metabolites in exhaled human breath

D. García-Gómez, T. Gaisl, L. Bregy, P. M-L Sinues, M. Kohler and R. Zenobi

Disorders in tryptophan metabolism result in diseases such as vitamin B6 responsive xanthurenic aciduria, hydroxy-kynureninuria, tryptophanuria and Hartnup disease. The authors hypotesized that breath analysis may reveal compounds that are metabolically linked to tryptophan. The mass range of detected metabolites reached up to 265 u, which is beyond the mass range limit (150–200 u) of competing breath research techniques such as PTR or SIFT-MS.

Expanding metabolite coverage of real-time breath analysis by coupling a universal SESI source and a HRMS. A pilot study on tobacco smokers

Expanding metabolite coverage of real-time breath analysis by coupling a universal SESI source and a HRMS. A pilot study on tobacco smokers

M. T. Gaugg, D. Garcia Gomez, C. Barrios-Collado, G. Vidal-de-Miguel, M. Kohler, R. Zenobi and P. M-L Sinues

Coupling a SESI source and a HRMS (Orbitrap), the authors were able to identify exogenous compounds associated to smoking, as well as endogenous metabolites suggesting increased oxidative stress in smokers. According to the authors, most of these compounds correlated significantly with smoking frequency and allowed accurate discrimination of smokers and non-smokers.

Real-Time Chemical Analysis of E-Cigarette Aerosols by Means of Secondary Electrospray Ionization Mass Spectrometry

Real-Time Chemical Analysis of E-Cigarette Aerosols by Means of Secondary Electrospray Ionization Mass Spectrometry

D. Garcia-Gomez, T. Gaisl, C. Barrios-Collado, Guillermo Vidal-de-Miguel, M. Kohler and R. Zenobi

Chemical analysis of aerosols collected from electronic cigarettes (ECs) has shown that these devices produce vapors that contain harmful and potentially harmful compounds. Conventional analytical methods used for the analysis of electronic cigarettes do not reflect the actual composition of the aerosols generated because they usually neglect the changes in the chemical composition that occur during the aerosol generation process and after collection.

Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles

Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles

C. Barrios-Collado, D. Garcia-Gomez, R. Zenobi, G. Vidal-de-MiguelAlfredo J. Ibanez, and P. M-L Sinues

The authors document how hundreds of species can be tracked with an unparalleled time resolution of 2 min during day−night cycles. To further illustrate the capabilities of SESI-MS for volatile organic compounds (VOCs) analysis, they subjected the plant to mechanical damage and monitored its response.