Real-Time Chemical Analysis of E-Cigarette Aerosols by Means of Secondary Electrospray Ionization Mass Spectrometry

Real-Time Chemical Analysis of E-Cigarette Aerosols by Means of Secondary Electrospray Ionization Mass Spectrometry

D. Garcia-Gomez, T. Gaisl, C. Barrios-Collado, Guillermo Vidal-de-Miguel, M. Kohler and R. Zenobi

Real-Time Chemical Analysis of E-Cigarette Aerosols by Means of Secondary Electrospray Ionization Mass Spectrometry.png

Abstract

Chemical analysis of aerosols collected from electronic cigarettes (ECs) has shown that these devices produce vapors that contain harmful and potentially harmful compounds. Conventional analytical methods used for the analysis of electronic cigarettes do not reflect the actual composition of the aerosols generated because they usually neglect the changes in the chemical composition that occur during the aerosol generation process and after collection.

The aim of this work was to develop and apply a method for the real-time analysis of electronic cigarette aerosols, based on the secondary electrospray ionization technique coupled to high-resolution mass spectrometry, by mimicking the “vaping” process. Electronic cigarette aerosols were successfully analyzed and quantitative differences were found between the liquids and aerosols. Thanks to the high sensitivity shown by this method, more than 250 chemical substances were detected in the aerosols, some of them showing a high correlation with the operating power of the electronic cigarettes. The method also allows proper quantification of several chemical components such as alkaloids and flavor compounds.  

View on original journal

View on ResearchGate