Insights on the Working Principles of Secondary ElectrosprayIonization High‑Resolution Mass Spectrometry for QuantitativeAnalysis of Aerosol Chemical Composition

Xin Xu, Jia Fa Zeng, et al.

Xu2021_Article_InsightsOnTheWorkingPrinciples.PNG

Abstract: Real-time mass spectrometry (MS) has attracted increasing interest in environmental analysis due to its advantages in high time resolution, minimization of sampling artifact, and avoidance of time-consuming sample pretreatment. Among real-time MS methods, secondary electrospray ionization MS (SESI-MS) is showing great promise for the detection of organic compounds in atmospheric particulate matter. In this study, we demonstrated the working principles of secondary nanoelectrospray ionization (Sec-nESI) for real-time measurement of laboratory-generated organic aerosols using l-tartaric acid (TA) as a model compound. Factors affecting the detection of TA particles using a homemade Sec-nESI source coupled with a high-resolution mass spectrometer are systematically investigated. Temperature of ion transport capillary (ITC) was found to be the key factor in determining the ion signal intensity, which shows an increase of intensity by a factor of 100 from ITC temperature of 100–300 °C and could be attributed to more efficient desolvation and ionization. The characteristic fragment ion at m/z 72.99 was selected for quantitative analysis of TA at normalized collision energy of 50%, the optimal value applied during MS/MS analysis. Detection limit of 0.14 μg/m3 and a linear range of 0.2–2.97 μg/m3 are achieved. Satisfactory correlations between ion signal intensity and particle surface area (R2 = 0.969) and mass concentration (R2 = 0.967) were obtained. Although an equally good correlation was observed between signal intensity and particle surface area, the good correlation between signal intensity and particle mass concentration indicates that high solubility of TA ensures efficient dissolution of TA in the primary ESI droplets for further ionization.

Download article

Previous
Previous

Minimizing ion competition boosts volatile metabolome analysis by secondary electrospray ionization orbitrap mass spectrometry

Next
Next

Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases