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SUMMARY
Sleep is crucial to restore body functions and metabolism across nearly all tissues and cells, and sleep re-
striction is linked to various metabolic dysfunctions in humans. Using exhaled breath analysis by secondary
electrospray ionization high-resolutionmass spectrometry, wemeasured the human exhaledmetabolome at
10-s resolution across a night of sleep in combination with conventional polysomnography. Our subsequent
analysis of almost 2,000 metabolite features demonstrates rapid, reversible control of major metabolic path-
ways by the individual vigilance states. Within this framework, whereas a switch to wake reduces fatty acid
oxidation, a switch to slow-wave sleep increases it, and the transition to rapid eye movement sleep results in
elevation of tricarboxylic acid (TCA) cycle intermediates. Thus, in addition to daily regulation of metabolism,
there exists a surprising and complex underlying orchestration across sleep and wake. Both likely play an
important role in optimizing metabolic circuits for human performance and health.
INTRODUCTION

At the most basic level, humans spend daytime awake, moving

and feeding, and nighttime asleep, quiescent and fasting.

Considerable research has established that metabolism across

the brain and body is regulated in a daily ‘‘circadian’’ fashion,

complementing this pattern. Even in the absence of daily cues,

most aspects of this metabolic control persist, directed by an

endogenous molecular clockwork (Reinke and Asher, 2019).

However, systematic disruption of circadian patterns of activity,

for example by shiftwork, results in considerable disruptions to

normalmetabolic patterns, and such disruption is believed to un-

derlie the linkage between shiftwork and metabolic syndrome (a

spectrum of disorders, including obesity, diabetes, and cardio-

vascular morbidity, that are associated with metabolic dysfunc-

tion) (Kervezee et al., 2020).

Overlaying this daily pattern is the sleep-wake cycle itself, a

complex repetitive cycle of distinct brain states. Mammalian

sleep is divided into rapid eye movement (REM) sleep and

non-REM (NREM) sleep based on electroencephalogram (EEG)

and electromyogram (EMG) measurements. In humans, within

NREM sleep, three different stages are further differentiated;

N1 and N2 sleep are considered as gradual changes from wake-

fulness toward slow-wave sleep (SWS) or deep sleep (N3) (Kales

and Rechtschaffen, 1968). Sleep amount is driven both by circa-

dian influences and by a separate homeostatic process, with
This is an open access article under the CC BY-N
increasing time awake favoring increased sleep (Borbély et al.,

2016). Independently of circadian disruptions, impaired sleep

is also associated with major physiological and psychological

sequelae, such as impaired glucose and lipid metabolism, car-

diovascular disease, and impaired psychological and social

functioning, with enormous socioeconomic consequences

(Kecklund and Axelsson, 2016). Common sleep disorders are

themselves often associated with metabolic syndrome. For

example, obstructive sleep apnea (OSA) is linked to dyslipide-

mia, glucose intolerance, and type 2 diabetes, while different

forms of insomnia are correlated with impaired glycemic control

(Briançon-Marjollet et al., 2015).

Much of our knowledge of the control of metabolism by circa-

dian clocks and sleep in humans comes frommetabolomics, the

systematic study of small molecules produced by anabolic and

catabolic reactions, which can be sampled periodically across

the day from blood, urine, and saliva (Ang et al., 2012; Dallmann

et al., 2012; Bell et al., 2013; Davies et al., 2014; Skene et al.,

2018; Grant et al., 2019; Kervezee et al., 2019; Honma et al.,

2020; Hancox et al., 2021). These have been complemented

by sampling accessible tissues, such as blood and adipose tis-

sue, across time and analyzing the temporal pattern of RNAs

(transcriptomics) or proteins (proteomics) therein (Spörl et al.,

2012; Robles and Mann, 2013; Archer et al., 2014; Christou

et al., 2019). From these studies, up to 20% of all metabolites

vary with time of day, and this oscillation can be disrupted by
Cell Reports 37, 109903, October 26, 2021 ª 2021 The Authors. 1
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Figure 1. Real-time breath analysis during sleep by SESI-HRMS

(A) Experimental setup. Exhaled breath was sampled continuously with a mask, which was connected directly to the ionization source via a heated flexible tube.

Molecules were ionized in the electrospray consisting of water and formic acid. Sample flowwas controlled at the exhaust of the SESI source. Ions were detected

with a high-resolution time-of-flight mass spectrometer. In parallel, a full polysomnography was performed.

(B and C) Heat maps of 1,271m/z features detected in positive ionizationmode (B) and 725m/z features detected in negative ionization mode (C) over time in one

subject after feature-wise baseline subtraction. Sleep stages are labeled on the bottom of the heat maps and scale bars represent normalized intensity.
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circadian misphasing (shiftwork) (Kervezee et al., 2019) and by

sleep restriction (Bell et al., 2013) or sleep deprivation (Davies

et al., 2014). The following multiple overarching and logical

themes emerge: carbon energy storage as glycogen during

wake/daytime and its breakdown during sleep/nighttime and en-

ergy expenditure-related pathways during wake, followed by

synthesis and regeneration during sleep (Petit et al., 2015).

Although global metabolic rate (for example, oxygen con-

sumption and CO2 production as a measure of differences in en-

ergy expenditure and glucose utilization) has been measured

across sleep (Brebbia and Altshuler, 1965; Fontvieille et al.,

1994; Kayaba et al., 2017), changes in metabolic regulation on

a molecular level across different sleep stages remain unex-

plored. This is mainly due to a lack of sufficient sampling rates

for biofluids or tissues. Taking advantage of secondary electro-

spray ionization coupled to a high-resolution mass spectrometer

(SESI-HRMS) (Gaugg et al., 2016), our groups have overcome

these difficulties by analyzing exhaled breath. Breath analysis

provides real-time information within seconds in a non-invasive

fashion. Hundreds of metabolites have been reported from

breath, including fatty acids, amino acids, and tricarboxylic

acid (TCA) cycle intermediates (de Lacy Costello et al., 2014;

Bruderer et al., 2019). We have pioneered the use of these tech-

nologies for circadian measurements across the day (Sinues

et al., 2013; Martinez-Lozano Sinues et al., 2014) and for identi-

fication of molecular alterations present in various diseases dur-

ing daytime (Schwarz et al., 2016; Bregy et al., 2018; Gaisl et al.,

2018; Gaugg et al., 2019). Here, by delivering breath to our SESI-

HRMS across a night of sleep while simultaneously conducting

polysomnography, we provide a glimpse of the human exhaled
2 Cell Reports 37, 109903, October 26, 2021
metabolome at unprecedented 10-s resolution across sleep

stages during a full night of sleep.

RESULTS

Breath analysis during sleep
We analyzed exhaled breath of healthy individuals while they

were sleeping in order to access metabolic pathway activity dur-

ing different states of vigilance (see workflow, Figure 1A; Fig-

ure S1). Making use of the non-invasive and very high sampling

frequency of SESI-HRMS breath analysis, we were able to ac-

cess the human metabolome with an average depth of about

2,000 metabolite features per time point during sleep with a

time resolution of 10 swhile performing polysomnography in par-

allel (Figure 1A). In total, 13 healthy individuals with a normal

sleep architecture (Table S1) were analyzed, and we were able

to detect over time the traces of 1,996 metabolite features with

distinct mass-to-charge ratios (m/z). These traces were baseline

subtracted in order to remove confounding gradual changes in

metabolite time profiles across the night and then correlated

with individual sleep stages (see sample heat maps in Figures

1B and 1C; heat maps for all individuals are given in Figures S2

and S3; Data S1). In each individual, clear indications of families

of sleep-regulated metabolites were visible as vertical stripes in

these heat maps.

Sleep stage-specific metabolic patterns
In order to access whether there is noteworthy differential meta-

bolic regulation globally across different stages of sleep, we first

visualized median mass spectra of each sleep stage of all study
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Figure 2. Metabolic fingerprints of different sleep stages

(A and B) Visualization of median breath spectra during N3 sleep, REM sleep, and wakefulness after dimension reduction by t-distributed stochastic neighbor

embedding. Data points are colored by sleep stage (A) or colored and numbered subjects, respectively (B); n = 12.

(C) Q value distribution of analysis of variance testing for differences between amodel accounting for different effects of sleep stages and amodel not accounting

for these differences (n = 12). For 1,277 features, we obtained q values below 0.001. This indicates sleep stage-specific regulation of a major part of the me-

tabolome.

(D) Heat map representing the median intensity (Z scored) of each sleep stage for these 1,277 features clustered hierarchically (n = 12).

(E–J) Q value distributions from pairwise comparisons of N3 vs. wake (E), N3 vs. REM (F), REM vs. wake (G), N3 vs. N2 (H), N3 vs. N1 (I), N2 vs. N1 (J). While

comparisons of N3 sleep, REM sleep, and wakefulness revealed metabolic differences between these states, flat q value distributions obtained from com-

parisons between N1, N2, and N3 suggest similarity between those stages also on a metabolic level (n= 12).
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subjects after dimension reduction. We found that spectral data

of different people belonging to the same stage of vigilance clus-

ter together (Figure 2A), whereaswe did not observe clustering of

different vigilance states according to subjects (Figure 2B). Thus,

relative metabolite levels observed in different vigilance states

are similar across different subjects, while different vigilance

states in the same subject are not similar. Using analysis of vari-

ance individually for each metabolite, we then tested how a

model considering sleep states to affect metabolite levels in

breath performs compared with the null hypothesis of a model

that does not consider sleep stages and generated q value dis-

tributions of all metabolites. Remarkably, for most of the de-

tected m/z features (1,277 features), a significant association

with vigilance state (q < 0.001) is observed (Figure 2C). Adding

support to this hypothesis, numerous significant differences

are seen between all major sleep-wake states (NREM, REM,

and wake [Figures 2D–2G]). By contrast, far fewer differences

were observed among metabolites across related sleep states

(N1-, N2-, and N3-NREM sleep; Figures 2D and 2H–2J). There-

fore, we did not consider N1 and N2 sleep in our further analysis.

Immediate metabolic regulation
To further investigate the nature of these sleep state-dependent

metabolic patterns, we followed two approaches of analysis.

First, we performed pairwise comparisons of breath metabolite
levels during different sleep stages using Wilcoxon signed rank

tests in order to detect rapid changes in levels of individual me-

tabolites. An example of a single metabolite from a few hours of

sleep in three individuals is shown in Figure 3A, and a box plot of

this metabolite across all subjects and sleep stages is shown in

Figure 3B. Numerical comparisons across all subjects and fea-

tures are summarized in Figure 3C, with individual metabolites

from this Venn diagram listed in Table S3A. Sample box plots

coming from comparisons across all subjects and different sleep

stages are shown in Figure 3D (we present box plots for all iden-

tified metabolites further below). We found significant differ-

ences (q < 0.05) between REM sleep and wakefulness for

842 m/z features. Relative concentrations of 411 features

differed between N3 sleep and wakefulness, and 312 features

had different levels during REM sleep and N3 sleep (Figure 3C)

(numbers of significantly different features at other q value cut-

offs can be seen in Figure S4).

In order to move beyond the discovery of simple pairwise cor-

relations of time series variables (in our case, a particular metab-

olite and a particular sleep stage) toward identifying directed

(‘‘causal’’) interactions that could characterize functional circuits

relating sleep and metabolism, we next developed a neural

network-based method to infer Granger causal relationships.

The concept of Granger causality was previously very success-

fully applied in the domains of economics (Granger, 1969) and
Cell Reports 37, 109903, October 26, 2021 3
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Figure 3. Pairwise comparisons unravel instantaneous metabolic response to sleep stage transitions

(A) Time traces of m/z 149.0237 (negative mode, hereafter abbreviated as ‘‘�’’) in three individuals, showing the direct increase of metabolite levels with REM

sleep. We detected such metabolites using conventional comparative statistics.

(B) Resulting box plot (center line: median; box limits: 25th and 75th percent quantile; whisker length: 1.5 interquartile range; n = 12) of metabolite shown in (A).

(C) Pairwise comparisons of mean breath spectra in Wilcoxon signed ranked tests suggest significant differential regulation of hundreds of metabolites across

different stages of sleep as presented in the bar plot (n = 13). The Venn diagram shows that there are overlaps between the sets of significant m/z features.

(D) Box plots (center line: median; box limits: 25th and 75th percent quantile; whisker length: 1.5 interquartile range) of three metabolites identified as carnitine

(n = 13), oxaloacetate (n = 13), and pentose (n = 13) showing significantly different levels in breath during N3 sleep andwakefulness, duringN3 and REMsleep, and

during REM sleep and wakefulness, respectively. In addition, a time trace and box plot are provided for isoprene in Data S1.
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neuroscience (Seth et al., 2015). Our Granger causality frame-

work (fully described in the supplementary information) offers

an alternative view of our data based upon the concept of pre-

dictability, the idea that the most significant sleep-related me-

tabolites can be used to predict sleep states. Importantly, this

framework also detects non-linear and time-delayed relation-

ships, which are common in multistep metabolic pathways.

Potential advantages of this computational approach are exten-

sively discussed in the supplementary information. Our analysis

based on Granger causality resulted in 386, 196, and 135 fea-

tures associated with wakefulness, REM sleep, and N3 sleep,

respectively, many of which (182, 60, and 59) were not identified

by our initial conventional approach. An example of a metabolite

identifiedwith this approach is shown in Figure 4A for a few hours

of sleep in three individuals. Numerical comparisons across all

subjects and features are summarized in Figure 4B, with individ-

ual features listed in Table S3A.

Pathway mapping of mass spectrometry features: Sleep
stages control axes of metabolism
To understand the cellular physiology underlying the metabolic

regulation triggered by sleep stages, we next performed com-

pound identification and pathway analysis. Compound identifi-

cation is still the biggest challenge in the field of metabolomics.
4 Cell Reports 37, 109903, October 26, 2021
Nevertheless, more and more tools are being developed for

automated compound annotation (Chaleckis et al., 2019). We

used an annotation algorithm that combines information about

elemental composition obtained from the accurately measured

mass with metabolic pathway mapping and enrichment analysis

(Li et al., 2013). In this way, possible errors in the identification of

any individual compound are ‘‘averaged out’’ against the expec-

tation that quantitative differences would be observed across

multiple metabolites within a given pathway. Because auto-

mated annotation is still prone to false positives, we investigated

top pathway hits further manually and confirmed the identities of

several compounds with tandem mass spectrometry data from

liquid chromatography-mass spectrometry measurements of

exhaled breath condensate or from real-time breath measure-

ments (Figure S5).

Considering the full set of annotated compoundswhose abun-

dance varies with vigilance state, we found that the activity

of most major axes of cellular metabolism, such as lipid meta-

bolism, carbohydrate metabolism, and TCA cycle activity, are

in fact strongly sleep-wake state dependent (Figure 5; box plots

of all compounds are in Figure S6 and quantitative results are in

Table S3B).

For example, we were able to identify short-chain acylcarni-

tines (ACs) in exhaled breath (Figures 6A–6C; Figures S7A and
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(A) Time traces of m/z 181.06 (�) in three individuals. Metabolite levels were rising slowly after the occurrence of REM sleep. Our analysis based on Granger

causality unraveled such more complex temporal relationships.

(B) Results from inferring non-linear Granger causality with neural networks suggest causal relationships between several hundreds of m/z features and N3 sleep,

REM sleep, and wakefulness as shown in the bar plot (n = 13). The Venn diagram shows that these sets of features are overlapping.
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S7B), and we found breath levels of short-chain ACs to be high-

est during wakefulness and lowest during N3 sleep (Figure 6D).

For most of them, we additionally found Granger causal relation-

ships to wakefulness and/or N3 sleep. We did not detect signif-

icant differences in carnitine levels between N3 and REM sleep.

Thus, systemic changes in fatty acid oxidation are occurring

across sleep and wake (yellow quadrant, Figure 5): a switch

to wake increases fatty acid oxidation, whereas a switch to

NREM sleep reduces it.

Similarly, we found several metabolites involved in propanoate

and butanoate metabolism to be downregulated during NREM

sleep, and for propanoate and aminobutanoate, we also found

Granger causal indications of this connection (green quadrant,

Figure 5). Thesemolecules are natural byproducts of fat and pro-

tein metabolism.

We observed increased levels of several TCA cycle intermedi-

ates during REMsleep (brown quadrant, Figure 5).We also found

malate and oxaloacetate to be Granger causally related with

REM sleep (succinate was not upregulated during REM sleep).

Because normally REM sleep can only follow NREM sleep, a

transition to REM sleep results in elevation of TCA cycle interme-

diates, possibly preparing for mitochondrial oxidation later in

wake.

Finally, when examining glycolysis, we found highest glucose

levels in breath during wakefulness and lowest levels during

REM sleep. We observed a similar behavior for several other me-

tabolites involved in the pentose phosphate pathway and in

pentose and glucoronate interconversions. For most of them,

we also found Granger causal relationships with REM sleep

and wakefulness. By contrast, we found opposite trends for py-

ruvate levels, which were increased during REM sleep and

lowest during wakefulness. In addition, for many metabolites

involved in carbohydrate metabolism, we observed significant

differences between REM sleep and N3 sleep (purple and tur-

quoise quadrants, Figure 5).

DISCUSSION

By taking advantage of metabolites present in human breath, our

studies measure the human metabolome non-invasively at the

unprecedented resolution of 10 s across the night. Such exhaled
metabolites are mainly the product of diffusion across the lung

alveolar membrane and therefore are thought to resemble the

composition of the blood metabolome with additional contribu-

tions from the upper airways (Ross and Babgi, 2017). We have

separately verified this in nine subjects, comparing the results

of the metabolome in blood draws during wakefulness to those

obtained from breath at the same time point. Levels of ACs

correlate well with blood levels (Figures S7C–S7E), indicating

that breath levels are reflecting systemic carnitine levels. We

also verified this relation between breath and blood metabolites

for representatives of other metabolic pathways, such as the

TCA cycle (fumarate), glycolysis (lactate), propionate meta-

bolism (lactate), and the pentose phosphate pathway (glycerate)

(Figure S7F).

Our results imply that amajor part of the humanmetabolome is

subjected to sleep stage-specific regulation. As mentioned

above, this question has been hitherto difficult to address due

to issues of sampling rate versus sleep stage duration. However,

our studies are in agreement with existing data of which we are

aware. For example, isoprene has been studied previously with

respect to legmovements during sleep andmuscle atonia during

REM sleep (King et al., 2012). Among the detected molecules,

we identified isoprene and observed decreased isoprene levels

during REM sleep and spikes in exhaled isoprene associated

with leg movements (Data S1).

In our study, we found extensive and immediate metabolic re-

sponses unique to REM sleep, N3 sleep, and wakefulness as

well as metabolites with a more complicated but predictable

temporal relationship to vigilance states. Metabolic patterns of

N1, N2, and N3 sleep did not differ significantly across adjacent

stages, indicating that the gradual transition fromwakefulness to

deep sleep across these three states is reflected as well on a

metabolic level.

Mechanistically, our data could be interpreted in two direc-

tions: sleep stage changes driving metabolism or metabolism

driving sleep stage changes.While we favor the former, only sub-

sequent elucidation of specific control mechanisms will fully

clarify this question.

Free carnitine is rate limiting for the transport of long-chain

fatty acids across the mitochondrial membrane to be oxidized

(Longo et al., 2016), and supplementation with L-carnitine is
Cell Reports 37, 109903, October 26, 2021 5
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Figure 6. Acylcarnitines in breath during sleep.

(A andB) Unprecedented identification of acylcarnitines in exhaled breath. Tandemmass spectrometry (MS-MS) spectra of acetylcarnitine obtained from exhaled

breath condensate (A) and serum (B) in comparison with database MS-MS spectra.

(C) Fragmentation pattern of acylcarnitines reported in the literature (Giesbertz et al., 2015).

(D) Median intensities of short-chain acylcarnitines in breath during the different sleep stages (n = 12). The intensities were scaled between 0 and 1 for each

compound. Carnitine levels are decreasing continuously from wakefulness to N3 sleep.
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even able to increase fatty acid oxidation directly (Rodgers et al.,

2020). ACs of different lengths are intermediary products of this

oxidation process. When b-oxidation of fatty acids is impaired or

incomplete, this can lead to accumulation of ACs of different

lengths. Such accumulation has been observed in patients

suffering from metabolic diseases (Adams et al., 2009; Zhao

et al., 2020). While long-chain ACs originate predominately

from lipid metabolism, short-chain ACs, especially propionylcar-

nitine, can also be derived from branched-chain amino acid

catabolism (McCann et al., 2021).

In this study, we found a decrease of free carnitine as well as

short-chain AC levels during N3 sleep compared with wakeful-

ness as well as a gradual decrease in carnitine and AC levels

from wake over N1, N2, and N3 NREM sleep (Figure 6). Our find-

ings are in agreement with Davies et al. (2014), who reported

increased long-chain AC levels during sleep deprivation

compared with sleep. These results suggest that ACs are utilized

during N3 sleep and that energy consumption by fatty acid

degradation is favored during sleep. This is consistent with res-

piratory quotient measurement and metabolic labeling studies

demonstrating greater relative reliance on fatty acid b-oxidation

during the sleep (fasting) phase of the diurnal cycle (Aalling et al.,

2018). Our lack of observed differences in valine and (iso)leucine

levels between wakefulness and SWS may indicate that the

changes in short-chain AC levels do not result from alterations

of branched-chain amino acid breakdown. However, we cannot

ascertain that they reflect only fatty acid oxidation because we

cannot detect long-chain AC from breath. Free carnitine may
Figure 5. Metabolic pathways with differential regulation across differ

(A) Median intensities during N3 sleep, REM sleep, andwakefulness are represent

0 to 1 feature wise). Colors represent the different pathways; n = 12 for metabolit

mode.

(B) Metabolic pathway map showing these compounds with sleep state-depend

Solid ovals indicate metabolites showing significant differences. Underlined com

level and at least one sleep stage. Metabolic up- or downregulation during sleep s

molecules. Corresponding box plots of all indicated compounds are provided in
even play a direct role in the sleep-wake process; administration

of L-carnitine was found to decrease daytime sleepiness in nar-

colepsy patients (Miyagawa et al., 2013).

From our results for pathways involved in carbohydrate

metabolism, we hypothesize increased glucose utilization via

glycolysis during REM sleep. This assumption is in line with

the previously reported decrease in glucose utilization during

NREM sleep compared with REM sleep (Van Cauter et al., 1997).

Increased pyruvate production via glycolysis during REM sleep

goes along with increased TCA cycle activity during REM sleep

induced by increased feeding from pyruvate via oxaloacetate, as

suggested by our findings on TCA cycle intermediates.

Furthermore, there is evidence that the TCA cycle is involved

in immune reprogramming (Galván-Peña and O’Neill, 2014).

Macrophage activation and cytokine production can be

triggered by checkpoints in the TCA cycle, most notably after

citrate/isocitrate and after succinate, increasing these intermedi-

ates (Williams and O’Neill, 2018). In addition, sleep is associated

with anti-inflammatory function (Gómez-González et al., 2012).

Our failure to see upregulated succinate during REM sleep in

combination with our finding of upregulation of its successors

fumarate and malate might indicate that this checkpoint is not

activated, making REM sleep anti-inflammatory.

Sleep loss has been associated with impaired glucose meta-

bolism (Knutson, 2007). Recently, circulating propanoate levels

have been associated positively with insulin sensitivity (M€uller

et al., 2019). Based on these discoveries, one may hypothesize

from our findings of downregulated propanoate and butanoate
ent stages of vigilance

ed for identifiedmetabolites of major pathways by size and opacity (scaled from

es detected in negative mode, and n = 13 for metabolites detected in positive

ent regulation. Metabolites in italic font in transparent ovals are not detected.

pounds additionally exhibit a Granger causal relationship between metabolite

tages is indicated for each pathway with arrows. Dashed lines indicate omitted

Figure S6, and numeric results are in Table S3B.
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Table 1. Participant characteristics

Age (mean ± SD, years) 29.2 ± 8.3

Sex (male participants, %) 57

Body mass index (mean ± SD, kg/m2) 22 ± 3

Smoking state

Active smokers (%) 7

Ex-smokers (%) 7

SD, standard deviation.
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metabolism during N3 sleep that short-chain fatty acids act as

mediators for decreased insulin sensitivity during SWS.

In recent years, circadian regulation ofmetabolismhas received

enormous attention, and many aspects of cellular metabolism are

also under circadian control, often in a tissue-specific fashion. (Li

et al., 2012). Sleep timing is amajor output of circadian clock func-

tion, and disruption of both clocks and sleep is associated with

metabolic diseases (Knutson and Van Cauter, 2008; Kelly et al.,

2018). Therefore, how circadian control of metabolism overlaps

with the vigilance state-dependent metabolism we document re-

mains an important question. In this study, we did not control for

circadian rhythms or measure circadian phase, but metabolic

regulation by the circadian clock has been studied previously by

our lab and others, including by metabolomics and exhalomics

(Dallmann et al., 2012; Martinez-Lozano Sinues et al., 2014;

Dyar et al., 2018; Cedernaes et al., 2019; Kervezee et al., 2019).

Despite different sample types and different analysis techniques,

we detected 247 of the m/z features reported in these circadian

studies also in our study of exhaled breath during sleep (Data

S2). Among these commonly detected metabolites, the major

part (42.5%) is regulated by both sleep stages and circadian

clocks; 16.2% are controlled by circadian clocks only, and

28.3% are only associated with sleep states. This comparison

of our sleep state-dependent data and the results from previous

circadian studies suggests that circadian and sleep-dependent

regulation of metabolism may represent an interlocked network

ofmetabolic control analogous to the overlapping layers of control

that we have described recently for the sleep- and circadian-

dependent transcriptome (Noya et al., 2019).

Limitations of the study
Althoughourdataset identifiesover1,000sleepstate-regulatedm/

z features, the pathways subject to sleep-dependent regulation

found in this study are probably only scratching the surface of

such metabolic regulation. Further studies will improve the identi-

fication of unknown compounds and thus enlarge pathway

coverage. Moreover, it might be interesting to further investigate

kinetic effects in future studies. Using two different statistical

frameworks, our study has found extensive correlation between

metabolite levels and sleep stages. In particular, for the second

of these frameworks (Granger causality), our correlations disre-

gard any time bias. Thus, we are able to find correlations across

the entirety of a sequential biochemical pathway rather than only

in its proximal step. For many metabolites, our results from

Granger causality show a time lag between sleep-stage switch

andmetabolic alterations for a number ofmetabolites. Fromvisual

inspection of the corresponding time traces, we conclude that the
8 Cell Reports 37, 109903, October 26, 2021
timing isdifferent for differentmetabolites. Thiswouldbeexpected

becausesleep-controlledmetabolic pathwayswouldhave individ-

ual steps with different phase relationships to sleep state transi-

tions. However, our algorithm distinguishes only between metab-

olites with and without a relationship to sleep stages, and we

cannot retrieve any quantitative information about the temporal

pattern, such as lag time. It would be interesting to implement

this in future studies, potentially showingwhich biochemical steps

are directly regulated by sleep stage andwhich are indirect conse-

quences of upstream or downstream sleep-regulated events. In

addition, one could study if the length of a sleep state plays a

role. Because we binned data for each sleep stage, we cannot

make any statement about the influence of sleep stage length on

metabolite levels detected. However, this might become an inter-

esting subject of future studies; with reproducible quantifications

across individuals, it might then be possible to determine previous

amountsofwakeorof aparticular sleepstate. Thiswouldbeause-

ful metric for the diagnosis of sleep disorders or even of adequate

sleep in general.

Further, onemust be aware of the limited explanatory power of

Granger causality analysis for not ‘‘causally sufficient’’ variables

(Peters et al., 2017). For example, if ‘‘superior’’ mechanisms exist

that regulate bothmetabolism and sleep, statements of causality

between ion intensities and sleep phases could be meaningless.

Therefore, futuremechanistic studies are required to validate our

findings.

In conclusion, by analyzing exhaled breath during sleep, we

found unprecedented indications for sleep states as organizers

of cellular metabolism. Not only circadian patterns but also

sleep-wake patterns dynamically seem to program metabolism,

providing precise timing for carbohydrate synthesis and degra-

dation, fatty acid oxidation, and the mitochondrial TCA cycle.

Thereby, they might directly connect sleep patterns to metabolic

homeostasis and health.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sleep experiment
Study participants

A group of 14 healthy volunteers (12 non-smokers, 1 ex-smoker, 1 active smoker) in the age of 29.2 ± 8.3 years was recruited

for this study. Participant characteristics are summarized in Table 1. 57% of the study subjects were male and mean BMI ± SD

was 22 ± 3 kg/m2. They did not take any medication. The participants were asked to refrain from eating, drinking (except water),

chewing gum, brushing their teeth and using any facial cosmetics (such as lip balm) during at least one hour prior to the mea-

surements. Each individual spent two consecutive nights in the laboratory. In the first night, SESI-HRMS measurements were

carried out in positive ionization mode, in the second night in negative ionization mode. A full polysomnography was performed

in both nights. One participant could not be measured due to dysfunction of the MS and one quit the study after the first night.

Therefore, the final numbers of included participants are n = 13 for measurements in positive ion mode and n = 12 for measure-

ments in negative ion mode. The measurements were conducted in accordance with the Declaration of Helsinki and written

informed consent was obtained from all participants. The study was approved by the local ethical committee (KEK-ZH 2016-

00384).

Blood-breath comparison experiments
Study participants

Nine healthy volunteers in the age of 30.6 ± 7.8 years, 44% female, were studied to compare metabolite levels in breath and

blood. All participants were non-smokers and did not take any medication. The participants underwent real-time breath analysis

by SESI-HRMS and whole blood has been withdrawn simultaneously. Participants were asked to refrain from eating, drinking

(except water), chewing gum, brushing their teeth and using any facial cosmetics (such as lip balm) during at least one hour

prior to the measurements. The experiments were conducted in accordance with the Declaration of Helsinki and written

informed consent was obtained from all participants. The study was approved by the local ethical committee (KEK-ZH 2016-

00384).
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METHOD DETAILS

SESI-HRMS measurements during sleep
In order to sample exhaled breath continuously, we modified a continuous positive airway pressure (CPAP) mask with a hole

(inner Ø = 12 mm), through which the individuals could inhale and exhale freely (Figure 1A). 0.2 L/min were drawn into the ionization

chamber by a vacuum pump installed at the exhaust of the ionization source. The flow was controlled by a mass flow controller. The

mask was connected to the SESI source via a flexible stainless steel tube, which was coated with SilcoNert 2000 (SilcoTek GmbH,

BadHomburg, Germany) and heated to 130�C in order to prevent adsorption and condensation. The flexibility of this tube allowed the

participants to move and sleep in different body positions. Real-time breath analysis was performed with a commercial SESI source

(SEADM, Spain) coupled to a TripleTOF 5600+ high resolution mass spectrometer (AB Sciex, Concord, ON, Canada). The spray so-

lution consisted of 0.2% formic acid (99%–100%, VWR chemicals) in water (LC-MS grade, Fisher Scientific) and a voltage of 5.5 kV

was applied in positive ion mode and�4.5 kV in negative mode. Full scan mass spectra were recorded with an accumulation time of

10 s in a mass range from 50 to 500 Da in positive mode and 50 to 450 Da in negative ion mode respectively. The ion source was

heated to 130�C, curtain gas was set to 10, collision gas was set to 0, collision energy to (-)10 eV, declustering potential (-)20 V

Polysomnography
In parallel to the SESI-HRMSmeasurements full polysomnography was performed in all participants using an Alice 6 system (Philips

Respironics, PAUSA). For the setup aswell as the scoring the recommendations from the American Academy of SleepMedicine from

2007 were applied (Iber, 2007).

Blood breath comparison experiments
Real-time SESI-HRMS breath analysis

Real-time breath measurements were preformed similar to breath measurements during sleep. Instead of the flexible tube and the

mask a single-use mouthpiece was connected to the sampling line. The flow through the ion source was controlled to 0.2 L/min by a

low-Dp mass flow controller (Bronkhorst, Switzerland) at the exhaust of the source. The participants were exhaling with a pressure

drop of 12mbar and to enable sampling of end-tidal breath, a flow-splitter was installed front-end. No vacuum pumpwas used in this

setup. Full scan mass spectra were recorded in the range of 50 to 500 Da in positive mode with an accumulation time of 1 s. At least

six exhalations were measured per person. All other parameters were as described for the measurements during sleep.

UPLC-tandem-MS measurements of serum
Whole blood was left at room temperature for 10-30 min for clotting. To obtain serum, it was then centrifuged for 15 min at 1500 rpm.

Aliquots of 200 mL were taken, 200 mL of 1 mg/mL 15N2-tryptophan (Cambridge Isotope Laboratories, Inc., Tewksbury, USA) in water

were added as internal standard and proteins were precipitated by the addition of 600 mL of methanol (LC-MS grade, Fisher Scien-

tific, Pittsburgh, USA). Samples were incubated on ice for 10minutes and centrifuged at 4�C and 15800 g for 15min. The supernatant

was filtered using a 0.2 mm reversed cellulose membrane filter, 400 mL were aliquoted and solvents were removed in a vacuum dryer.

The residual was resuspended in 75 mL of a mixture of water and methanol (95/5, v/v, both LC-MS grade, Fisher Scientific, Pitts-

burgh, USA), sonicated (10 min) and centrifuged (15 min, 15800 g) and transferred to LC vials with glass inserts. 10 mL were injected

for analysis. One sample per person has been analyzed, analytical reproducibility was verified with quality control samples.

Chromatographic separation was performed on an ACQUITY UPLC system (I-Class, Waters, MA, USA) using an ACQUITY UPLC

BEH C18 column (1.7 mm, 2.13 150 mm, Waters) with a corresponding precolumn filter. The flow rate was set to 240 mL/min using a

binary mixture of solvent A (water with 0.5% methanol and 0.1% formic acid) and solvent B (methanol with 0.1% formic acid). The

following gradient was used: 5%B (1min), 5 to 95%B (9 min), 100%B (2min), and 5%B (2 min). The column temperature was set to

30�C and the autosampler was kept at 5�C.
Mass spectra were recorded on a quadrupole-time-of-flight high resolution mass spectrometer (TripleTOF 5600+, AB Sciex,

Concord, ON, Canada) with a heated electrospray ionization source in positive ion mode. Full-scan mass spectra (m/z range 50

to 650 Da) and data dependent MS-MS acquisitions (m/z range 50 to 650 Da) were performed. Curtain gas was set to 30, GS1

and GS2 were set to 50, a spray voltage of 5 kV was applied and the ion source was heated to 500�C. The total cycle time was

kept at 800 ms to obtain at least 12 points/peak (minimal LC peak width = 9 s) with 150ms for full scanMS and 85ms for seven prod-

uct ion scans acquired with a collision energy of 10/20/30 eV.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing
Rawmass spectra were converted into .mzXML format usingMSConvert (ProteoWizard) (Kessner et al., 2008) and polysomnography

data was exported to .edf files. Further data processing was performed in MATLAB R2018b, R 3.6.1 and python 3.7.1. First, mass

spectra were aligned across all scans and all subjects. Then, a peaklist was generated by interpolation and averaging every 50th scan

of all spectra. For positive ion mode spectra, the obtained peaklist was recalibrated with a list of known reference peaks. All peaks

were centroided by integration yielding time traces of all peaks (1458 in positive ion mode, 1028 in negative ion mode) for each sub-
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Algorithm 1. Bootstrapping procedure for discovering metabolites with Granger causal associations with sleep stages

Input:N replicates of target fYtgTt =1 and predictors fXjgTt =1, for j = 1;.;p� 1; maximum lagK˛N; regularization parameter l> 0; parameter a ˛ ½0; 1�;
threshold cth >0; confidence level g ˛ð0; 1Þ; number of re-samples B ˛N.

Output: Set bS of predictors that Granger-cause Y.bS)fg
for b=1 to B do

Sample N replicates Ib = fib1 ;.; ibNg with replacement from I = f1; .;Ng.
Train the neural network on replicates in Ib with parameters K, l and a using mini-batch gradient descent.

Retrieve absolute values of importance weights c�b1 ;c�b2 ;.;c�bp�1 from the trained model.
end

for j =1 to p� 1 do

Compute the empirical ð1 � gÞ-quantile of bootstrapped weights for the j-th variable qj : = qc�
j
ð1 � gÞ.

if qjRcth thenbS) bSWfjg
end

return bS
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ject. In order to reduce the number of features, the following filtering criteria were applied: Only features that were higher in exhaled

breath than dry room air in at least 50% of the subjects were kept. Further, features with median intensities below 30 counts per sec-

ond in at least 50% of the subjects were removed. Since sleep stages have been determined from PSG in 30 s intervals and mass

spectra were recorded every 10 s, thus we interpolated sleep stage information, i. e. we always attributed the previous sleep

stage measured. MS time traces were smoothed by Savitzky Golay filtering (smoothing window of 19 data points). In order to reduce

technical noise, such as spray instabilities, but also to account for breathing variations, we normalized our data. The humidity of

breath is supposed to be constant (Burton, 2000). Therefore, we used the water cluster signal ([(H2O)3+H]
+, m/z 55.03897) for normal-

ization in positive ion mode and the signal of a water-formic acid cluster ([HCOOH+H2O]-, m/z 63.00877) for normalization in negative

ion mode. The water signal varied across the night and across individuals (Data S3). Recently, significant inter-individual differences

in relative humidity of human breath have been reported from heterogeneous cohorts (Mansour et al., 2020). Our normalization might

therefore introduce a bias here. However, we lack of any better method to distinguish between biological and technical noise. MS

times and PSG times were synchronized, data points during lights on period as well as data points, where only MS or only PSG

data was available, were removed. Moreover, very short sleep stages (< 70 s) were annotated with the previous one.

Statistics
Detrending

In order to separate gradual changes in metabolic profiles across the night from acute changes across sleep stages, we subtracted a

baseline prior to statistical analysis, which we obtained from Savitzky-Golay filtering (smoothing window of 1001 datapoints).

One-way ANOVA
We fitted our data for each metabolite with linear mixed effects models with a fixed effect for sleep stage and a random effect for

person using the Satterthwaite’s degrees of freedom method (Kuznetsova et al., 2017). We then performed an c2 test to assess,

whether the model with the different levels for the different sleep stages performs better than the simplest model with only an inter-

cept. The obtained p values were corrected for multiple hypothesis testing using Storey’s procedure (Storey, 2002).

Pairwise comparisons
In order to perform summary statistics, we binned our data sleep stage-wise, by averaging all spectra corresponding to one sleep

stage for each subject. We then performed pairwise comparisons of the different sleep stages using a two-sided Wilcoxon signed

ranked test. Again, we corrected for multiple hypothesis testing using Storey’s procedure (Storey, 2002). In addition, we calculated

pairwise effect sizes (Cohen’s d (Cohen, 1977)) between sleep stages for each metabolite.

Inferring non-linear Granger causality with neural networks
To discover metabolic features that are Granger-caused by different sleep stages, we trained feedforward neural networks with a

specially tailored architecture (see Figure S1, code publicly available, ETH research collection: https://doi.org/10.3929/

ethz-b-000422459) with sparsity-inducing penalty terms in the loss function. After the above mentioned preprocessing, we per-

formed training on positive and negative mode MS time series (non-binned) for three stages of sleep separately: wakefulness, N3

and REM. All sequences were time-reversed (Winkler et al., 2016) to infer Granger causal relationships from sleep stage transitions

to metabolism. We used a bootstrap procedure (Fox, 2002) to identify significant interactions between variables (see Algorithm 1).

Implementation details, values of hyperparameters and the results of simulation experiments and cross-validation are provided in

the following paragraphs.
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The Granger causality approach that we adopt has seen few applications in the analysis of time course MS data. This method has

several advantages over conventional approaches, such as correlation analysis and analysis of variance (ANOVA):

d It can represent non-additive nonlinear dependencies between sleep stage labels and multiple mass spectrometric features;

d It deals with time series in a principled way and can account for time-delayed (auto)regressive relationships;

d Granger causality is a directed relationship, whereas (cross-)correlation does not focus on precedence in time;

d It does not merely examine marginal relationships, it performs multiple regression.

More formally, when inferring Granger causality, we consider the following setting. We assume that we are givenN replicates ofMS

and sleep stage time series retrieved from N different subjects. These time series include:

d A categorically-valued sleep stage time series fYtgTt=1;Yt˛fW;N1;N2;N3;Rg, for each t;

d M continuously-valued time series fXj
tg

T

t= 1, where j = 1;.;p� 1, and Xj
t corresponds to the relative intensity of ion j in themass

spectrum of exhaled breath at time step t.

Our goal is then to identify metabolites that are causally related to sleep stages, i.e., metabolites that drive the sleep stage, denoted

by Xj/Y, and metabolites that are driven by the stage, Y/Xj.

Granger causality
Granger causality, introduced by C. W. J. Granger (Granger, 1969) is one of the most popular approaches to practical causal

time series analysis. Intuitively, if time series X is a cause of Y, then the past of X should be useful for predicting the future of Y

(Eichler, 2012). Formally, Granger causality from stationary time series fXtgt˛Z to fYtgt˛Z can be defined as follows (Eichler, 2012).

Let I�ðt�1Þ be an information set containing all information available in the universe up to time t� 1, and let I�
�Xðt�1Þ be the

same set as I�ðt � 1Þ, but with values of time series X removed (up to time t� 1). We say that X Granger-causes Y if and only if

Yt and I�ðt�1Þ are not conditionally independent given I�
�Xðt � 1Þ, for all t˛Z. This definition for the bivariate case can be easily

extended to multivariate time series. In practice, Granger causality is often inferred by assuming some time series model, for,

instance, vector autoregression (VAR). It can be shown that in VAR Granger causality can be determined from zero constraints on

the coefficients (L€utkepohl, 2005). Although simple and interpretable, such representation does not allow for nonlinearities and com-

plex interactions between variables. Therefore, we leverage highly expressive neural networks (NN) (Goodfellow et al., 2016) to infer

Granger causality.

Limitations of Granger causality
While the concept of Granger causality is practically compelling, it has some shortcomings and can be misleading in certain cases.

Granger causality analysis can yield spurious conclusions if the set of considered variables is not causally sufficient (Peters et al.,

2017). For example, if there exist ‘‘superior’’ mechanisms that regulate both metabolism and sleep, statements of causality between

ion intensities and sleep phases could be meaningless. (Such superior mechanisms would be biologically logical to imagine.) Issues

can also arise if time series are not sampled frequently enough to recover relationships (unlikely in our case) or if there exist instan-

taneous interactions between variables, which are imaginable in biochemical pathways (Peters et al., 2017).

Model
Inspired by componentwise multilayer perceptron (cMLP) (Tank et al., 2017), we introduce our own feedforward NN architecture for

unsupervised Granger causal discovery. For the sake of convenience, we refer to it as Granger causal multilayer perceptron (GC-

MLP). Data S4 depicts the schematic of a GC-MLP. This network is trained in a supervised manner to forecast target time series

Y based on past K values of predictors X1;X2;.;Xp�1 and Y itself. Note, that the network consists of p disjoint encoders which pro-

duce ‘‘hidden’’ representations for each variable. These representations are thenmultiplied with importance weights c1; c2;.; cp and

concatenated into one vector.

Consequently, this vector is fed into a multilayer perceptron (MLP) to compute forecast by t of Yt. Granger causality from Xj to Y can

then be identified by inspecting importance weight cj. Ideally, we expect that
��cj��z0 when XjKY, and

��cj��> 0 when Xj/ Y. The loss

function of GC-MLP is crucial for estimating Granger causality. It encourages importance weights to be sparse by using an elastic-

net-style (Zou and Hastie, 2005) term that penalizes [1 and [2 norms of c = ½ c1 . cp �:

�
XT

t =K + 1

XC
j = 1

gj

n
ðytÞj ln

�
ðby tÞj

�
+
�
1�ðytÞj

�
ln
�
1�ðby tÞj

�o
+ l

�
ajjc

���j1 + ð1�aÞ
������c���j22

�
;

where K is the maximum lag of autoregressive relationships; C is the number of classes; gj is the weight for class j; by t refers to the

forecast for the value of yt; ðvÞj stands for the j-th component of vector v; l> 0 is the regularization parameter; and a˛ ½0; 1� controls
the tradeoff between [1 and [2 penalties. Note that herein yt is assumed to be categorical and encoded with the one-hot encoding

scheme.
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Bootstrapping
In order to quantify our uncertainty about Granger causal relationships (i.e., to infer a conventional p value), we leverage bootstrap-

ping (Fox, 2002). Many GC-MLPs are trained on resampled time series replicates to construct a confidence interval for each cj that

can be used to decide whether relationship Xj/Y is significant. The full procedure is summarized in Algorithm 1.

Time reversal
Algorithm 1 identifies a set of Granger causes of response variable Y. Wemight be interested in solving the inverse problem: finding a

set of predictors Granger-caused by the response. The naive solutionwould be to train aGC-MLP for each predictor variable Xj as the

response and identify if Y Granger-causes Xj. In high-dimensional mass spectrometric time series, this approach is prohibitively

costly. We can leverage time-reversed Granger causality (Winkler et al., 2016) by performing inference on time-reversed sequences.

Intuitively, we expect that, if Y/Xj, then the future values of Xj should be useful for predicting the past values of Y. Thus, instead of

naively training p� 1 models, with time reversal we only need one GC-MLP.

Hyperparameters and network specification
We implemented the model in Python programming language (version 3.7.1) using PyTorch machine learning library (version 1.0.1)

We considered (auto-)regressive relationships up to lag K = 30 (z300 s). We choose the model order sufficiently large, to avoid

potential misspecification. Each GC-MLP had 100 hidden units in each encoder and 200 shared hidden units. We set the

regularization parameter l to 0:001 and a = 0:8. The choice of l is motivated by simulation experiment results discussed

below. In the cross-entropy loss, the weight of 0:9 is assigned to the less prevalent sleep stage, whereas the weight of 0:1 is

assigned to the more prevalent one. The training is performed for one epoch by gradient descent using Adam optimizer with

mini-batches of 100 data points. For the bootstrapping procedure, we trained B= 1000 models and used parameter values

cth = 0:0025 and g = 0:95.

Cross-validation
To investigate whether it is possible to predict sleep stages solely based on mass spectrometric profiles, we performed cross-vali-

dation. Granger causal discoveries discussed before would be meaningless, if trained neural networks possessed no predictive po-

wer. During validation we did not include sleep stage time series as a predictor. We used the leave-one-subject-out cross-validation

(CV) procedure to see howwell GC-MLPs generalize across different subjects. Namely, for each iteration, we left out one subject and

trained a neural network on the rest. To evaluate performance, we employed the balanced accuracy score. Thismetric ismore appro-

priate than the normal accuracy because of imbalances in frequencies of classes. Average balanced accuracy CV scores are shown

in Table S2A and S2B. For all responses, mean scores are significantly greater-than 0.5 (a = 0:05). Thus, on average, in all prediction

tasks GC-MLPs perform better than the random classifier. To sum up, the results of cross-validation suggest that there might be

some structure in the data driven by differences between stages of sleep.

Simulation experiments
Weperformed experiments on perturbedmass spectrometry data to verify that our neural network technique for discovering Granger

causality behaves as expected. We explored the number of false discoveries made in different scenarios and investigated the rela-

tionship between the number of false discoveries and regularization parameter l. Note that in these experiments we did not reverse

the time series.

First, we examine inference results under permuted ion intensity time series. We considered five features that had been originally

discovered as Granger-causing REM sleep stage transitions with mass-to charge ratios 69.070, 118.065, 152.128 229.252 and

271.299. We generated 10 synthetic datasets wherein we randomly permuted all metabolic time series except for the sequences

of these five variables (10 random seeds used). Subsequently, we applied the bootstrapping procedure on these datasets with

B= 100 resamples. We expect that none of the variables the time series of which were permuted are identified as causal, whereas

the five features that remain fixed should be. In all simulations, every of the invariant variables is discovered as causal. Moreover,

none of the permuted time series are falsely claimed to drive the response.

Another experiment we performed was with randomly permuting REM sleep stage labels while keeping metabolic time series un-

touched. In this setting, we expect our inference technique to identify no variables that are causally related with the permuted target.

We ran the bootstrapping procedure on 10 different simulated datasets with B= 100 resamples. In all datasets, no spurious relation-

ships were found from predictors to the target.

Finally, we replaced the original REM signal with a synthetic target time series that behaves like a sleep stage sequence. Similarly to

the setting above, we expect no causal links to be inferred. We performed bootstrapping on 10 simulated datasets with B = 100

resamples. We ran the inference for l = 0; 10�4; 10�3; 10�2. Table S2C contains numbers of false discoveries made by the inference

technique under different values of l. Observe that for the largest value almost no false discoveries are made. A decrease in the value

of the regularization parameter seems to lead to more spurious causal relationships being inferred. For l = 0:001, the value we used

in the causal analysis of MS and sleep stage time series, on average, 14.4 false discoveries are made. Although this result is not ideal,

larger values of the regularization parameter could be, in practice, too conservative and, thus, may lead to inferring a causal graph

that is much sparser than the true structure, i.e., the loss of power.
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In general, the results of the simulation experiments are promising. The inference technique we proposed behaves as expected on

perturbed MS data; and we can adequately control the number of false discoveries with parameter l.

Pathway enrichment analysis and compound ID
Automated compound information using metabolic pathway information was performed using the mummichog algorithm (Li et al.,

2013; Chong et al, 2019). The algorithm was run with the q-values obtained from pairwise comparisons described above. Signifi-

cance threshold was set to q = 0.05 and the manually curated human genome-scale metabolic model from the mummichog python

package (‘‘MFN’’) was used as pathway library. Adducts were restricted to [M+H]+ and [M-H]-. Since mostly protonated or deproto-

nated species are formed in SESI (Rioseras et al., 2017), we removed all radicals from the list of annotated compounds.We did further

manual investigation on metabolites involved in the pathways with the highest numbers of significant hits and we thus reduced the

selection to a few key pathways. We selected only pathways with very high metabolite coverage and pathways, in which key metab-

olites were significant hits. Carboxylic acids, where protonated species were significant hits, but not the deprotonated forms, were

neglected. When pathway coverage was only high, because one mass resulted in several significant hits due to different isomers in

one pathway, those were also ignored. For compounds involved in those pathways of interest, MS-MS spectra obtained from

exhaled breath condensate (EBC) were compared to database spectra. Experimental details of EBC collection and ultra-high per-

formance liquid chromatography-tandem MS methods are described elsewhere (Gaugg et al., 2017). If features were not detected

in EBC, real-time SESI-MS-MS spectra were recorded using an Orbitrap QExactive Plus mass spectrometer (Thermo Fisher, Ger-

many) with a commercial SESI source (SuperSESI, Fossil Ion Tech, Spain). Breath was sampled at 0.3 L/min. The sampling line of

the ion source was heated to 130�C, the ionization chamber was heated to 90�C and a spray solution of 0.1% formic acid in water

was used. A spray voltage of (-)3500 V was applied. The mass spectrometer was operated at 140,000 resolution in data dependent

acquisition mode with an isolation window of 0.4 m/z. The automated gain control was set to 1e6 at MS1 level and to 1e5 at MS-MS

level and amaximal injection time of 500ms was used. MS-MS library spectra were obtained from the spectral library with all publicly

available MS-MS records available for MSDial (Tsugawa et al., 2015; Tsugawa, 2019).

Blood-breath comparison experiments
Data analysis

Data preprocessing of breath spectra was performed as described elsewhere (Gaugg et al., 2019). Signal intensities were normalized

to the water cluster signal ([(H2O)3+H]
+, m/z 55.03897). Raw data obtained from blood was converted to .mzXML format with

MSConvert (ProteoWizard) (Kessner et al., 2008) and further processed in MATLAB R2018b, R 3.6.1. After centroiding, chromato-

graphic peaks of target compounds were integrated. Robust linear regression (Holland and Welsch, 1977) was performed with

the intensities obtained from blood and breath. In addition, we calculated Pearson’s and Spearman’s correlation coefficients. As

described above, we compared MS-MS spectra from blood and exhaled breath condensate with database spectra, to confirm

the identities of the detected acylcarnitines.
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