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Introduction and Objectives
P iz I
VOCs in breath are produced either by various biochemical processes | ‘Human exhaled breath samples were analyzed with an Exhalion Super v Exhalion Super SESI coupled to a Q Exactive HF MS system allows rapid |
within the body or as a result of external factors such as environmental ESESl coupled to a Q Exactive HF mass spectrometer. monitoring of the absorption of exogenous compounds originating I
exposure, lifestyle, diet, and/or therapeutic interventions. Real-time ' The system measures CO, levels (%), pressure drop (mbar), exhalation from cigarette smoke and/or aerosol from various inhalable products II
breath analysis is an advantageous analytical approach by which | flow rate (L/min), and total exhaled volume (L) in real-time. from the lungs into the bloodstream. B
information about physiological changes over a short period of time can | Compounds present in exhaled breath are ionized by the Super SESI v" Nicotine, one the main compound inhaled from smoking, showed a 'I
be obtained. Real-time analysis of human exhaled breath enables rapid | interface and detected by high-resolution MS. well-defined washing pattern in the lungs, where the intensity =
monitoring of exposure-driven absorption of exogenous VOCs from the [ Human volunteers exhaled before and after exposure to specific increased right after smoking and slowly decreased afterwards. !E
lungs into the bloodstream. intervention, at a rate of one exhalation per minute. MS acquisition was || v’ Indole, known as an endogenous metabolite, showed a relatively flat = |
The aim of this study was to detect, confirm and monitor absorption of [ Performed in full-scan positive ionization mode by scanning m/z 50-600 = profile depending on the type of exposure. 1‘,
exogenous compounds originating from cigarette smoke and various [ at 2 resolution of 240,000. Putative compound identification was / Camphor, and pyridoxal—which were confirmed in a tested inhalable |
inhalable products from the lungs into the bloodstream. supported by the mass accuracy of the instrument (5 ppm tolerance) = products—showed a similar washing pattern as nicotine. >
and further confirmed by tandem MS experiments using high-energy = v' These results demonstrate the benefits of this device to study real-
collisional dissociation (HCD). time exhaled breath samples.
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Interface Figure 3. Profile of exhaled breath using SUPER SESI interface coupled to a

Figure 2. Profile of exhaled breath using SUPER SESI interface coupled to a Q Exactive HF
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