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Abstract: Identifying and differentiating bacteria based on their emitted volatile organic compounds
(VOCs) opens vast opportunities for rapid diagnostics. Secondary electrospray ionization high-
resolution mass spectrometry (SESI-HRMS) is an ideal technique for VOC-biomarker discovery
because of its speed, sensitivity towards polar molecules and compound characterization possibilities.
Here, an in vitro SESI-HRMS workflow to find biomarkers for cystic fibrosis (CF)-related pathogens
P. aeruginosa, S. pneumoniae, S. aureus, H. influenzae, E. coli and S. maltophilia is described. From
180 headspace samples, the six pathogens are distinguishable in the first three principal components
and predictive analysis with a support vector machine algorithm using leave-one-out cross-validation
exhibited perfect accuracy scores for the differentiation between the groups. Additionally, 94 distinc-
tive features were found by recursive feature elimination and further characterized by SESI-MS/MS,
which yielded 33 putatively identified biomarkers. In conclusion, the six pathogens can be distin-
guished in vitro based on their VOC profiles as well as the herein reported putative biomarkers. In
the future, these putative biomarkers might be helpful for pathogen detection in vivo based on breath
samples from patients with CF.

Keywords: cystic fibrosis; pathogen profiles; secondary electrospray ionization; high-resolution
mass spectrometry; recursive feature elimination; putative compound identification; volatile organic
compounds

1. Introduction

Confirming the presence and identity of pathogenic bacteria is of key importance for
the diagnosis of bacterial infections. Classical diagnostic methods are slow because they
involve time-consuming steps such as cultivation followed by biochemical, serological or
genetic analysis [1]. Alternatively, bacteria can be identified and specified indirectly by
detecting emitted metabolic volatile organic compounds (VOCs) [2]. If some VOCs are
characteristic for one particular bacterium, they can be used as markers to indicate the
presence of the species in the sample under investigation, e.g., in vitro cultures, blood, urine,
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saliva, sputum or breath. Using more rapid diagnostic methods to detect pathogen-specific
biomarkers allows more timely treatment decisions, allows to monitor the progression of a
treatment and might be less invasive [3–5].

Sensitive detection of low abundant gaseous biomarkers is typically achieved by gas
chromatography–mass spectrometry (GC-MS) [6], electronic nose sensing [7], ion mobility
spectrometry (IMS) [8], proton transfer reaction–mass spectrometry (PTR-MS) [9], selected
ion flow tube–mass spectrometry (SIFT-MS) [10] or secondary electrospray ionization–mass
spectrometry (SESI-MS). As numerous bacterial VOCs bear polar functionalities [11], SESI-
MS is a good choice as a detection technique due to its outstanding sensitivity for polar
analytes [12] and because it can easily be combined with high resolution MS (HRMS) [13].

Therefore, SESI-MS has demonstrated its strength to detect and differentiate bacteria
in preceding research. Prior publications include differentiation of infectious pathogens
in vitro [14,15] identification of lung infections and bacterial differentiation in vitro and
in mice breath [16,17], differentiation of an antibiotic-susceptible and -resistant bacteria
strains in vitro [18], differentiation of oral bacteria in vitro and in human saliva [19],
monitoring the time course of a bacterial lung infection in mice breath [20], identification
and differentiation of pathogens in contaminated food [21] and monitoring metabolic
changes of gut bacteria upon perturbation [22,23]. However, these studies were conducted
either in a targeted manner looking only at specific VOCs [18,22,23] or in an untargeted
manner by looking only at m/z-features without further investigating the metabolite’s
identities beyond a mass-to-charge ratio or a molecular formula [14–17,19–21].

Thus, the aim of this study is to find volatile biomarkers which allow to distinguish
between in vitro bacterial cultures and assign putative molecular structures to the fea-
tures in a systematic approach using SESI-HRMS and MS/MS data in combination with a
recently developed annotation tool [24]. The assignment of tentative structure helps for fea-
ture comparison across different analytical techniques and aids to formulate hypothetical
biomarkers, which can be subsequently confirmed by additional methods such as analysis
of gas condensate with liquid chromatography–MS (LC-MS) [25]. We demonstrate this by
searching for characteristic biomarkers with discriminative power to differentiate between
Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influen-
zae, Escherichia coli and Stenotrophomonas maltophilia. These six pathogens are frequently
associated with lung infections in patients suffering from cystic fibrosis (CF) [26], and prior
breath analysis studies with SESI-MS showed that a Stenotrophomonas maltophilia lung colo-
nization can be detected [27]. To achieve a successful eradication of the pathogens, early
detection of the bacteria and a technique to monitor the progression of medical treatment
are highly desirable.

2. Results
2.1. Pathogen Separation and Predictive Analysis

We have analyzed 30 biological replicates of six pathogen families with SESI-HRMS.
The same dilution medium was used for all of the six pathogen strains to allow better
comparison of the differences between pathogens excluding the medium or its interaction
with the pathogens. As has been pointed out by Rees et al. [28] and Schulz-Bohm et al. [29],
previous studies have shown that the produced volatiles are highly dependent on the
selected media [30–33].

Prior to any further analysis, average raw mass spectra for each pathogen (averaged
over scans and repetitions) were calculated for a visual assessment (see Figure 1). While
still at an early stage of data analysis, a visible difference between the Gram-negative
(E. coli, H. influenzae) and Gram-positive bacteria (P. aeruginosa, S. aureus, S. maltophilia
and S. pneumoniae) could be observed. Additionally, pyrolline (m/z value 70.065, positive
ionization mode), a confirmed volatile marker for P. aeruginosa [34], was handpicked to
compare its absolute intensity across all six pathogens (Figure 1A).
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Figure 1. Average mass spectra (averaged over scans and repetitions) for the six pathogens in
positive (A) and negative (B) ionization mode. For better visibility, the intensity scale is square root
transformed and only the 50–300 m/z range is depicted. The five most intense signals are labeled. As
an example of a characteristic feature for P. aeruginosa, a zoomed region corresponding to pyridine
[M + H]+ is shown in positive mode.
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The preprocessing of the raw mass spectra (Section 4.3) revealed 939 m/z-features
across all samples of which 684 were found to be significantly different
(Benjamin–Hochberg-adjusted p < 0.05) in pathogen cultures than in sterile medium.
By clustering highly correlated m/z-features (Section 4.4), 128 m/z-representants were ob-
tained and subsequently used for principal components analysis (PCA) (Figure 2). The first
three principal components (PC) were found to account for almost 70% of total variance
in the data which is considered to be a good result. The scores plot of the first two PCs
(57.97% of total variance in the data) showed a strong separation between three groups of
cultures: P. aeruginosa and S. maltophilia in one group, E. coli and H. influenzae in the second
group, and S. aureus and S. pneumoniae in the third group. On the level of single principal
components, the separation of closely related E. coli and H. influenzae from the other four
strains was observed along PC1, which accounted for 29.91% of the variance in the data.
PC2 (28.12%) captured the differences between P. aeruginosa and S. maltophilia on one side
and S. pneumoniae on the other, while PC3 (10.17%) was found to discriminate S. aureus and
E. coli from the other four strains (Figure 2B). The other principal components (not shown
here) did not provide any further differentiation between the bacterial species.
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Figure 2. Principal component scores plots of the 6 pathogen groups generated by the extracted
128 m/z-representants. (A) PC scores plot of PC1 (29.91%) and PC2 (28.06%), (B) PC scores plot of PC1
and PC3 (10.17%) and (C) three-dimensional representation of the first three principal components
scores. Squares: E. coli, circles: H. influenzae, triangles (point up): P. aeruginosa: plus signs: S. aureus,
cross marks: S. maltophilia, diamonds: S. pneumoniae. Colouring was added based on pathogen labels;
90% data ellipses were added (A,B) for better visual depiction.
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After exhibiting that the low-dimensional representation of the data with principal
components showed a qualitative trend in the differentiation between the cultures, we
assessed the quantitative ability of pathogen profiles to classify the samples into different
pathogen groups by supervised machine learning (Section 4.4). In each cross-validation
loop of the leave-one-out cross-validation (LOOCV), one sample file was left out and
assigned no label. The remaining 179 samples were used to generate pathogen profiles
of m/z-representants and subsequently train a classifier with a support vector machine
algorithm (SVM). The prediction was then made on the left out sample and compared with
the original label. By calculating the cumulative error rate, we recorded an accuracy of
100% for the discrimination between the pathogen groups, i.e., there were no instances of
misclassification in any of the 180 predictions in LOOCV. Of note, we have also assessed
the classification accuracy by replacing SVM with random forests algorithm [35] trained
with 500 decision trees as well as with one-vs-one SVM [36]. We found no changes in
accuracy except in the case of random forests algorithm (99.44% accuracy) where one single
S. maltophilia sample was wrongly classified as P. aeruginosa.

2.2. Volatile Compounds Associated with Pathogen Strains

As we demonstrated that the overall pathogen profiles can be used to classify samples
into different pathogen groups, we sought to identify the subset of potential compounds
that was the most informative for a single pathogen group when compared to the other five.
We focused on the compounds with higher abundance in the pathogen group in question,
because the work presented here is part of a larger project to detect volatile infection
markers in breath. Compounds with higher intensities will be more likely detected in
breath, where the concentrations will likely be lower than the volatiles detected from
headspace from single bacteria cultures. In addition, focusing on the markers with higher
intensity for the respective pathogen versus the other five minimizes the likelihood that the
characteristic volatile marker is simply originating from a stronger consumption of media
compared to the other pathogen families. The inverse case, that all other five pathogen
families consume the media more than the single pathogen, which would also result in a
relative higher intensity for the pathogen group versus the other groups is assumed not to
be likely, with the investigated set of pathogens from different pathogen strains.

The ranking of the m/z-representants according to their discriminatory strength was
established for each pathogen group separately with SVM-recursive feature elimination
(SVM-RFE) [37]. The pathogen group in question was compared in a two-class model
to the other five labeled as a single new group. In this way, six different rankings were
produced. Given the ranks, the top 10% of the m/z-representants (rounded down to 12
from 10% of 128) were selected per pathogen group. The 12 m/z-representants associated
with the corresponding pathogen group were further reduced by selecting only those m/z-
representants with a higher intensity expression in the pathogen group in question when
compared to each of the other five. For that, five one-tailed Mann–Whitney U-tests were
performed per m/z-representant with Hochberg-adjusted [38] p-value threshold set to 0.05.
As a result we isolated in total 31 m/z-representants: six for E. Coli, four for H. influenzae,
four for P. aeruginosa, five for S. aureus, three for S. maltophilia and nine for S. pneumoniae.

From the selected 31 m/z-representants, we generated principal component scores
plots to visualize differences between the pathogens and compare the plots with the
broader case of 128 m/z-representants (Figure 2). The first three principal components
(Figure 3) accounted for approximately 77% of the variance in the data and showed a
visible tendency in separating the pathogen groups. When compared to the PC plots of
the 128 representants, we found that the adjacent pathogen clusters in Figure 2A (first two
dimensions) showed similar proximity when 31 m/z-representants were used (Figure 3A).
Interestingly, the closeness of P. aeruginosa and S. maltophilia clusters was evident in both
cases, indicating that both pathogens were more alike in their metabolite profiles even if
the more discriminative variables were selected. However, a noticeable difference was
found in the separation between Gram-positive bacteria (S. aureus and S. pneumoniae) and
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Gram-negative bacteria (E. coli, H. influenzae, P. aeruginosa and S. maltophilia), where the
difference was fully captured by the first principal component (34.63%). For the sake of
consistency, we also assessed the classification accuracy with SVM by adding the rigorous
selection process above when building training data sets in LOOCV. We achieved the same
average accuracy score (100%) as in Section 2.1 where full pathogen profiles were used.
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Figure 3. Principal component scores plots of the 6 pathogen groups generated by the selected
31 m/z-representants. (A) PC scores plot of the first two principal components (58.49%). (B) PC
scores plot of the first and third principal component (52.84%). (C) three-dimensional representation
of the first three principal components scores. Same coloring and data ellipses were added as in
Figure 2.

The compound identification work was done for all m/z-features contained in the
clusters given by the m/z-representants. One cluster (associated with S. pneumoniae), en-
compassing 24 features of which 15 had a mass defect 0.4 < ∆m/z < 1, was excluded
at this stage for further analysis because of the unfeasible high number of features and
the unlikeliness of metabolites exhibiting such characteristic m/z values [39]. The remain-
ing 30 m/z-representants contained 94 m/z-features, from which for 33 it was possible
to assign likely compound structure based on the available MS2 data. The most likely
compounds were proposed by a literature comparison to assign them to three groups:
First, known volatile markers for the investigated pathogen or another bacteria; second,
known microbial metabolites; and third reported metabolites with either an entry into the
Human Metabolome Database (HMDB) or Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Section 4.5). In summary, we could putatively identify 33 compounds,
the elemental composition could be assigned to 47 with the available MS2 data and 14 m/z-
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features were listed with their m/z values. For the complete list containing m/z values,
molecular formulas or compound names, we refer the reader to the Table S5.

For P. aeruginosa, we could putatively identify the following compounds: pyrroline,
pyrrole, 2-methylbutanenitrile and nicotinic acid. Pyrroline (C15668) was reported as a
volatile marker for P. aeruginosa measured with an ambient MS (Hu et al. [34]). Pyrrole
(C19907) was reported as a volatile marker for P. aeruginosa measured with GC-MS (Filipiak
et al. [40]). Interestingly, both of the compounds have been reported as being present
with high intensities during the early linear growth phase with culture experiments. 2-
Methylbutanenitrile (C21525), as well as pyrroline and pyrrole, have been reported by Bean
et al. [41] who investigated 24 different clinical isolates and putatively identified these three
compounds with GC×GC-TOF. Nicotinic acid (C00253) is a novel putative volatile marker
for P. aeruginosa, which is also known as vitamin B3. It has been reported as a microbial
marker but not as a volatile marker for P. aerugionas (KEGG, map01120). A metabolite of
nicotinic acid, methyl nicotinate has been reported as a volatile marker for Mycobacterium
tuberculosis (Sethi et al. [3]). Although the boiling point of nicotinic acid is higher than
methyl nicotinate (boiling point: 292.5 ± 13 °C vs. 209.0 ± 0 °C), it is still in the range of the
detection capabilities of SESI-HRMS for semi-volatile compounds (see Section 4.5).

The following four novel volatile markers for S. maltophilia could be putatively
identified: benzothiazole, threo-(homo)2-isocitrate, 2-propionyl-1-pyrroline and tropo-
nine. Benzothiazole (HMDB32930) has already been reported as a volatile released from
Bacillus strains but not from S. maltophilia (Chao-Nan He et al. [42]). Threo-(homo)-2-
isocitrate (C16597) has an entry in KEGG as microbial metabolite (map01120). 2-Propionyl-
1-pyrroline (HMDB34883) has not been reported as a microbial metabolite, but is closely
related to 2-acetyl-1-pyrroline which is produced by a range of bacteria (Routray and
Rayaguru [43]). Tropinone (C00783) has not been reported as microbial metabolites.

For H. influenzae, N-(3’-methylthio)propylmalic acid isomers (C17215, C17214) and
aminonitrophenol isomers (C19321, C19322, C19323) are proposed as novel volatile mark-
ers, which have not yet been reported as microbial metabolites.

For E. coli, phenylacetylglycine and N-ethylphenyl-acetamide could be putatively
identified. Phenylacetylglycine (C05598) has been reported as gut microbiota metabo-
lite (Yap et al. [44]). N-ethylphenyl-acetamide (C11487) has not been reported as micro-
bial metabolites.

For S. aureus, 2-hydroxy-2,4-hexadienoic acid and the m- and p-benzenediol isomers
could be putatively identified. We report 2-hydroxy-2,4-hexadienoic acid (C11354) and
the the m- and p-benzenediol isomers (C01751, C00530) as putative novel markers, both of
which have been reported as microbial metabolites (KEGG, map01120). Diethanolamine
(C11260) has not been reported as a microbial metabolite.

S. pneumoniae had the highest number of characteristic features among this pathogen
group, of which 18 were putatively assigned. Pyrimidine (C00396) has previously been
reported as an elevated volatile marker for S. aureus and S. Typhimurium with SESI-MS
(Zhu et al. [14]), and 2-acetylthiazole (HMDB0032964) was reported as volatile marker
for Bacillus strains with gas chromatography mass spectrometry (Li et al. [45]). Ben-
zylideneacetone (HMDB0031617) has been reported for bacteria Xenorhabdus nematophila
(Ji et al. [46]) and t-muurolol (C20184) as microbial metabolite for a marine Streptomyces sp.
(Ding et al. [47]), while 2-methylpropanoic acid (C02632), 2-furanmethanol (C20441) styrene-
cis-2,3-dihydrodiol (C07084) are listed in KEEG as microbial metaboiltes (map01120).
The remaining eleven putatively identified compounds have so far not been reported as
microbial metabolites: 1,2- or 1,3-propanediol isomers (isomeric C00583/ C02457), oc-
tanoic acid (C06423), 2,3-dihydroxy-3-methylpentanoate (C06007), 2-propanoylthiazole
(HMDB37168), beta-spathulene (HMDB36416), farnesal (C03461), imidazole- or pyrazole-4-
methanol isomers (isomeric HMDB60768/C05562), 2- or 3-acetylthiophene isomers (iso-
meric HMDB33133/HMDB33134), 2-acetyl-3-methylpyrazine (HMDB30001), 9-oxononanoic
acid (C16322) and undecenoic acid (C13910).
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After having completed the compound identification work, we decided to visualize
the relative intensity differences in a heatmap (Figure 4) of all 94 m/z-features and assess
the relationship between the pathogens by means of hierarchical clustering analysis (HCA,
Euclidean distance measure, average linkage method [48]). The dendrogram in Figure 4
shows, as is also visible in the PC scores plots (Figure 3) using m/z-representants, that
P. aeruginosa and S. maltophilia are very similar to one another as they cluster early as
the function of the cluster tree height. When looking at the selected features a group of
nitrogen containing chemicals, including pyrrole, pyrroline, 2-methylbutanenitrile and
nicotinate showed a higher relative abundance in P. aeruginosa than in S. maltophilia, while
a group of highly oxidized compounds O5-O8, including the putatively identified threo-
(homo)-2-isocitrate showed higher intensities for S. maltophilia than for P. aeruginosa. The
Gram-positive bacteria S. pneumoniae and S. aureus tend to cluster together and are farthest
away from the four Gram-negative bacteria. This was also confirmed in Figure 3. When
compared to each other, S. pneumoniae showed a large group of compounds with higher
relative intensity differentiating it from S. aureus. This group was not particularly highly
oxygenated and it was possible to putatively identify 18 of the 28 m/z-features in this
group. For S. aureus, higher relative intensities were observed for 16 m/z-features, including
diethanolamine, n- and p-benzenediol and 2-hydroxy-2,4-hexadienoic acid. Most of the
remaining m/z-features of this group could not be annotated with a molecular composition
and are listed as m/z values. Interestingly, the dendrogram in Figure 4 shows that H.
influenzae is further away from E. coli than E. coli to P. aeruginosa and S. maltophilia. This
is somehow less obvious from the PC scores plot in Figure 3. For H. influenzae, a group
of nitrogen-containing compounds, mostly highly oxygenated O3-O9 markers, including
amino-nitrophenol isomers, showed higher abundance for H. influenzae than for E. coli
but were also present in E. coli. The only marker without nitrogen in this group was
(3’-methylthio)-propylmalic acid. On the other side, another group of nitrogen-containing
compounds with only few highly oxygenated markers showed higher relative intensities
for E. coli than H. influenzae, including phenylacetylglycine and N-ethylphenyl-acetamide.
These compounds had a significantly lower relative intensity in H. influenzae even when
compared with the other pathogens.
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Figure 4. Heatmap of the 94 selected m/z-features across all 6 pathogen groups. Cell colors (range
from red (high relative intensity) to blue (low relative intensity)) correspond to relative compound
intensity (mean centered and divided by the standard deviation). The top dendrogram (Euclidean
distance, average linkage method) shows the relationship between pathogen samples. EC: E. coli,
HI: H. influenzae, PA: P. aeruginosa, SA: S. aureus, SM: S. maltophilia, SP: S. pneumoniae. The putative
compound names, elemental compositions and m/z values are shown as row names (see also
Table S5). The pathogen of the associated two-class model from which a given compound was
selected is provided in the brackets.
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3. Discussion

The aim of this work was to determine if the six CF-associated pulmonary pathogens
can be distinguished with SESI-HRMS and to isolate and identify the most informative
VOCs. This work lays the groundwork to provide a basis for the detection of infections
in breath of people with CF. One of the main strengths of this multiple pathogen study
was its high number of biological replicates (n = 180 biological samples with 30 biological
replicates for each of the six pathogens). Another advantage when compared to most other
studies (see, e.g., in [14,28,49,50]) was the usage of SESI-HRMS instead of GC-MS. This
allowed for inclusion of positively as well as negatively charged ions, which are rarely
measured with GC, resulting in rich VOC profiles of the pathogen groups. To the best of
our knowledge, this is the first time that the selected six CF-associated pathogens were
investigated with SESI-HRMS.

The extracted VOC profiles were complex, as a large number of m/z-features were
acquired from the measurements of the samples. By applying dimensionality reduction
based on the Pearson correlation coefficients between the features by means of a static tree
cut in the hierarchical tree, we intended to group isotopologues, adducts, fragments and
metabolically linked compounds into clusters. As SESI-HRMS is an on-line method not
relying on pre-separation, all these species are detected together—no matter whether they
are from the same compound (isotopologues, adducts, fragments) or from their biological
relationship in a metabolic pathway. If the latter is the case, it would be interesting to study
the metabolic relationship in more detail in future studies.

This study has demonstrated that the full VOC profiles of the six pathogens allowed a
qualitative differentiation of bacterial species by simple PCA. Interestingly, when using
only the most informative features from our data pipeline, the differentiation between
the Gram-negative and the Gram-positive bacteria was very evident. Another key point
in our work was the inclusion of supervised machine learning as a method to assess the
predictive power of the pathogen profiles. As a result, we concluded that it was possible to
assign single samples to different bacteria strains with a very high accuracy (100%). We
argue that this positive result demonstrates the potential application of VOCs as diagnostic
markers. Nevertheless, despite using LOOCV to assess the prediction of pathogen groups,
an independent validation set would still be needed in order to evaluate the robustness of
our statistical procedure. The importance of using supervised models was also indicated
in the seminal work of Rees et al. [28] where the authors report the average prediction
accuracy as one of their main results. As explained there, the translation of profiles or
selected markers found in profiles into clinical settings needs test parameters such as
accuracy to be reported in order to evaluate reliability and precision of the differentiation
between the pathogens.

When compared to other studies, Nizio et al. [49] is conceptually the most closely re-
lated study, with a focus on CF-associated pathogens including P. aeruginosa, S. Maltophilia,
H. Influenzae, S. Pneumoniae and two others, but not S. Aureus or E. Coli. Interestingly,
Nizio et al. could not differentiate their set of six pathogens relying on GC×GC-TOF mea-
surements and unsupervised analysis with principal components. Notably, a comparison
of the results of different multiple pathogen studies is limited because different sets of
pathogens have been investigated in each study. Each newly investigated pathogen or
non-investigated pathogen can change the final set of characteristic compounds, which is
specific only to differentiate the pathogens of the conducted study.

We hypothesized that by recursively eliminating the majority of the variables in a
two-class model and comparing one pathogen against the others we could capture the
most informative features of the pathogen in question. This, however, can also include
features which are overly underexpressed for the considered pathogen or even features
which are similarly expressed for more than one pathogen group. The intentional post hoc
many-to-one tests were applied to single out only those with a higher relative abundance
for the one pathogen group of interest, which is not meant to undervalue other high



Metabolites 2021, 11, 773 11 of 18

ranking metabolites. Nevertheless, it would be feasible to repeat the current study where
the identified compounds are used as predictive variables.

An effort was made to putatively identify the resulting 94 most informative m/z-
features based on available MS2 data which resulted in 33 putatively identified compounds
and the assignment of 47 molecular formulas. The molecular formula patterns indicate
groups of related molecules for different pathogens, such as nitrogen containing com-
pounds for P. aeruginosa, and groups of highly oxidized compounds with higher relative
abundances for some of the investigated pathogens. It must be pointed out that this is
a first explorative study and the compounds have only been putatively identified. The
relevant volatiles (e.g., the ones which can also be detected in breath of children with
cystic fibrosis and specific infections) will be investigated at a later stage for unequivocal
identification with either GC×GC-TOF-MS or liquid chromatography-tandem mass spec-
trometry analysis (LC-MS/MS) [25]. Furthermore, note that the reported metabolites are
characteristic for the herein presented study, i.e., that other features might be found to be
characteristic if an alternative medium is used, an alternative medium temperature is set
or alternative pathogens are compared against each another. Consequently, there is no
guarantee that the same distinctive features would be found in vivo under physiological
conditions. We plan to follow up on this work with a thorough compound identification
work for in-depth analysis of biological pathways.

The data analysis workflow leading to the above results was motivated by the work
of Rees et al. in [28]. Specifically, we incorporated their idea of using the inner mechan-
ics of the supervised machine learning algorithm to rank the metabolites as well as of
using supervised machine learning as a way of quantifying the predictive power of the
metabolic profiles.

4. Materials and Methods
4.1. Pathogen Strains and Sample Preparation

Quality control strains of six pathogens were selected for continuous headspace
experiments. The selected pathogens from the American Type Culture Collection (ATCC)
were E. coli (ATCC 25922), H. influenzae (ATCC 9006), P. aeruginosa (ATCC 27853), S. aureus
(ATCC 29213), S.maltophilia (ATCC 13636) and S. pneumoniae (ATCC 49619). BD Chocolate
Agar (GC II Agar with IsoVitaleX), ready-to-use-plated media (Becton, No. 254089), was
used for H. influenzae and BD Columbia Agar with 5% Sheep Blood (Becton, No. 254089)
for the other strains, respectively. For each experiment, the quality control strain was first
subcultured on Agar plates and incubated at 37 °C in 5% CO2 for 24 h.

Subsequently, 8 mL Brain Heart Infusion (BHI) was inoculated by the sub-cultured
quality control strains and incubated at 35 °C in air for 24 h. A volume of 2 mL of each
sample was transferred to the headspace samplers and stored in an incubator at 37 °C until
measurement by SESI-HRMS. In total n = 30 biological replicates of each pathogen strain
in BHI medium and n = 11 sterile media were prepared. Further information about the
used pathogen strains and sample preparation materials can be found in the Supplemental
Information, Section 1.1.

4.2. Continuous Headspace Analysis with SESI-HRMS

The setup for continuous headspace analysis of pathogen cultures is shown in Figure 5.
A SESI-TOF ion source (Fossiliontech, Madrid, Spain) was connected to a TripleTOF 5600+
mass spectrometer (TTOF 5600+, Sciex, ON, Canada). Mass spectra were acquired in the
mass to charge (m/z) range between 50 and 500 with an accumulation time of 1 s. The
temperatures of the SESI ion source were set to sampling line (130 °C), ion source core
(130 °C) and nitrogen gas supply (130 °C). The effective temperature of the core of the SESI
ion source was below the boiling point of water (100 °C). Otherwise, the ionspray would
have evaporated resulting in no signal. Nanospray capillaries were used with 360 µm outer
diameter, 20 µm inner diameter, 50 cm length (TT-360-20-20-N-5, New Objective, Littleton,
MA, USA), and were cut to 30 cm length. The TTOF 5600+ settings were ion spray voltage
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(±4500 V), CUR (10), gas 1 (24), gas 2 (24), CE (±10 eV) and declustering potential (±20 V).
The effective ion spray voltage for the SESI-MS was ±3500 V.

m / z
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mass spectrometer (TOFMS)

H O  
+ 0.1% formic acid

2
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electrospray

secondary electrospray 
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at T=50 ℃

H O  2

Figure 5. Setup for bacteria continuous headspace analysis with SESI-HRMS.

Samples were analyzed in custom-made headspace samplers, which were designed
for minimal background signals with either highly inert glass or PTFE surfaces and tubes.
They could readily be disinfected and cleaned by high-purity grade solvents. A stream
of 200 mL/min filtered medical air was humidified with a gas-washing bottle and passed
through the headspace of the samplers, which were kept at 50 °C in a custom-made, heated
aluminum box throughout the measurements. Further information about the sampling
system can be found in the Supplemental Information, Section 1.2.

Biological replicates of each pathogen in BHI media and sterile media were measured
by continuous headspace SESI-HRMS analysis. The headspace sampler was detached when
the total amount of detected signal (total ion current chromatogram, TIC) reached a signal
plateau for a time period of 100 s. On each consecutive measurement day, one headspace
sample of each quality control strain was measured during a total of 30 measurement days.
Negative and positive ionization modes were successively measured every day, pathogen
by pathogen. The order of the measured pathogens was randomized for each day.

4.3. Data Preprocessing

Data files acquired from the measurements of pathogen and sterile medium samples
were converted to the open .mzXML format using the MSConvert (ProteoWizard version
3.0x, [51]) and further processed in R v3.4.4 (R Foundation for Statistical Computing, Vienna,
Austria). Mass spectra were resampled using piecewise cubic Hermite interpolation [52]
onto a linearly spaced m/z-axis with a resolution of 0.0005 (9× 108 data points, 50–500 m/z-
axis range). The total ion chromatograms (TICs) of each experiment were calculated by
integration and used to distinguish between the mass spectra originating from sample and
base signals. For each sample, peak picking was performed on the average mass spectrum
calculated over scans generated by the sample signal. Peak positions (m/z-features) were
then used to centroid the peaks by integration in each spectrum, yielding intensities of the
m/z-features and their time traces per experiment. To exclude the features which do not
originate from the sample, only those m/z-features with a positive correlation (Pearson
correlation coefficient >0.7) between the feature time trace and the TIC were selected.
Additionally, when compared over all samples, m/z-features which were selected in less
than 80% of the samples of one sample group (pathogen group or sterile medium) were
excluded in order to avoid using inconsistently measured features from further analysis.
Normalization of the data was performed by averaging the intensities of the m/z-features
during the scans generated by the sample signal and dividing by the averaged TIC over
the same scans (i.e., normalization with respect to TIC). The normalized intensities were
log10-transformed and arranged into a n × k matrix for further statistical analysis, with
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n the number of samples and k the number of m/z-features. For more details on data
preprocessing we refer the reader to Supplemental Information, Section 1.3.

4.4. Statistical Analysis

The data analysis workflow was motivated by the seminal work of Rees et al. [28] and
adapted to our setting. First, the effect of the sterile medium was reduced by applying
the same method as in [28]. More precisely, the Mann–Whitney U test [53] together with
Benjamini–Hochberg adjustment [54] for p-values was used to select the m/z-features
which are significantly different in pathogen groups than in sterile media samples. The
adjusted p-value threshold was set to 0.05.

Dimensionality reduction was performed of the data matrix representing the 6 pathogen
groups by clustering the m/z-features with similar intensity profiles across the pathogen
samples. Briefly, Pearson correlation coefficients of each pair of m/z-features were used to
construct the dissimilarity matrix for agglomerative hierarchical clustering (distance given
by 0.5 × (1 − c), c = Pearson correlation coefficient of a pair of features). The resulting
dendrogram (cluster tree) was cut at a fixed height of 0.1 grouping m/z-features with
similar intensity profiles into clusters. The first principal component of the standardized
(mean centered and divided by the standard deviation) m/z-feature set in each cluster was
selected as the representant of the cluster (here referred to as m/z-representant). In case
of a single element cluster the feature itself was selected as the representant. The m/z-
representants were arranged into a data matrix of pathogen profiles for further analysis.

PCA was conducted on the pathogen profiles for low dimensional visualization of the
pathogen samples. HCA with Euclidean distance measure and average linkage method [48]
was used to analyze the hierarchical relationship between the samples. Prior to PCA and
HCA, variables were mean centered and divided by the standard deviation. The predictive
power of the pathogen profiles was assessed in a LOOCV with linear SVM [55] adapted
for multi-class problems as described in [56]. In order to avoid feature selection bias and
overfitting, all the processing steps needed to derive the m/z-representants data matrix
of pathogen profiles were repeated in each loop of the cross-validation, see in [57,58]. The
ranking of the m/z-representants according to their discriminatory power was performed
for each pathogen group separately in one-against-all fashion by SVM-RFE [37].

The data analysis workflow above is very similar to the one in [28]. The main difference
was in the choice of the underlying supervised machine learning algorithm, namely, SVM,
and recursive feature elimination with SVM as a ranking criterion. In [28], the authors
relied on a different algorithm, namely, the random forest algorithm [35], to predict the
pathogen membership and the mean decrease in accuracy in the random forest algorithm
to rank their metabolites. We refer the reader to Supplemental Information, Section 1.4, for
more details on statistical analysis and how SVM is applied for feature ranking.

4.5. Putative Compound Identification with SESI-HRMS2

For putative compound identification, pathogen strains were measured on an Orbitrap
Q Exactive Plus (Orbitrap QE, Thermo Scientific, Waltham, MA, USA) which offers higher
resolving power and the capability of trapping low abundant ions. The same bacteria
cultivation conditions, headspace setup and flow settings were used for the compound
identification experiments as for the screening experiments. The main Orbitrap settings
were 250 ◦C ion transfer temperature, mass resolving power of 280,000 at m/z 200, 55% RF
lens, 5 × 106 AGC and 3000 ms maximum trapping time. The selective features from the
TTOF 5600+ data were used as m/z target list for Orbitrap MS1 and MS2 with a m/z 0.4
isolation window. Collision-induced dissociation (CID) was performed with N2 as collision
gas and with 10, 30 and 55 stepped collision energies.

The Orbitrap data was converted to .mzXML and .mgf files using MSConvert (Prote-
oWizardversion 3.0x, [51]). Information about the detailed compound identification work-
flow can be found in the Supplementary Material (Section 1.5). Briefly, first the features
were isotope filtered; second, irreproducible MS1 features (TTOF 5600+ versus Orbitrap



Metabolites 2021, 11, 773 14 of 18

QE) were rejected; third, preventing double counting of the same analyte by searching
for in-source CID fragments or characteristic electrospray ionisation (ESI) adducts and
losses; and fourth, the MS2 spectra were analyzed with SIRIUS (4.4.29) [24,59,60] yielding
in molecular formulas and chemical structures for some of the features. The chemical
structures with the top MS2 scores with an KEGG or HMDB database entry are reported as
putative assignments. If the SIRIUS interpretation of the MS2 data failed to yield a chemical
structure, the found molecular formula was instead processed to find metabolic pathways
linking features within a cluster. The results of the identification steps are listed in Table S2.

For most m/z-features, multiple compounds were suggested by SIRIUS with either a
KEGG or HMDB database entry. Compound candidates were compared with the literature
by (1) KEGG database entry, (2) HMDB database entry and (3) Google search with the
keywords ‘compound name’, ‘bacteria’ and ‘volatile’. A match with known volatile markers
from bacteria were assigned as most likely compounds, followed by known microbial
metabolites. In the case of multiple remaining possibilities, the candidate with top SIRIUS
MS2 matching score was listed. Multiple candidates were listed in case of more than one
candidates from the top score up to a score of +30. As an illustrative example, thirteen
candidates were suggested by Sirius for the m/z value +194.0815 with the molecular
composition C10H11NO3 for E. coli. Of these only, phenylacetylglycine was reported as a
microbial metabolite from the gut (Yap et al. [44]) which is suggested as the most likely
compound. Further information can be found in the Table S3.

For plausibility control, we investigated the volatility and polarity for the putatively
identified compounds. SESI can detect compounds with very high boiling points such as
fatty acids up to 15 carbon atoms (pentadecanoic acid, boiling point 330.4± 5 °C, [25]); amino
acids, e.g., l-pyroglutamic acid (453.1± 38.0 °C, [61]); or even formoterol (603.2± 55.0 °C [62]).
The vapor pressure for these compounds with relatively low volatility will be close to 0,
therefore we decided to rely on boiling points as volatility estimates. Furthermore, the
experimental boiling points for several of the putative, novel markers presented for this set
of 6 pathogens are not known. Therefore, for consistent comparison of volatility among
all compounds, the predicted boiling points calculated with ACD (ACD/Labs Percepta
PhysChem Module, version 2020, Advanced Chemistry Development, Inc., Toronto, On,
Canada) obtained from in [63] (ChemSpider) were used as an estimate for compound volatility
throughout this manuscript. Three of the suggested compound structures had very low
volatility (boiling point > 500 °C) and were very polar (logD < −4). These compounds were
also the ones with very low SIRIUS MS2 matching scores < −300. Although boiling points
are not a strict exclusion criteria we decided to report only the elemental composition and not
putative compound structure for compounds with very low SIRIUS MS2 scores < −300 (see
Table S4). Finally, we summarized the compounds resulting from the putative identification
work in a list containing m/z values, formulas or compound names together with KEGG or
HMDB entries (see Table S5).

5. Conclusions

In this study, the pathogens P. aeruginosa, S. pneumoniae, S. aureus, H. influenzae, E. coli
and S. maltophilia were investigated with SESI-HRMS. We have demonstrated by principal
component analysis and with supervised machine learning that the six investigated CF-
associated pathogens can be differentiated by SESI-HRMS. Additionally, we have isolated
the most informative markers which could potentially be applied in clinical settings for
disease detection. As SESI-HRMS is an on-line method, it could be used as a breath
diagnostic tool for rapid detection of pulmonary pathogens as a painless, non-invasive
alternative to sputum collection or bronchoscopy. This would be particularly advantageous
for patients with CF that are unable to produce sputum, such as young children and people
undergoing cystic fibrosis transmembrane regulator modulator therapy. We shall therefore
continue the investigation of bacterial headspaces and pursue validation of our results in
vitro, with the goal of developing this technique further for disease detection in vivo.
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Supplementary Materials: The following are available online: https://www.mdpi.com/article/10.3
390/metabo11110773/s1. Figure S1: Example of a typical TIC recorded in the positive mode during
the experiment measuring P. aeruginosa. The x-axis represents the scans (1 scan = 1 second) and y-axis
the standardized (mean centered and divided by the standard deviation) TIC. The scans with the
standardized TIC > 0 belong to signals generated by the pathogen, Figure S2: Process schema of
putative assignmen, Table S1: Alignement Table TripleTOF 5600+, Table S2: Target list with structure,
Table S3: Putative markers literature comparison, Table S4: Plausibility control, Table S5: List of
putatively identified compounds.
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ATCC American Type Culture Collection
BHI Brain Heart Infusion
CF Cystic fibrosis
CID Collision-induced dissociation
GC Gas chromatography
HCA Hierarchical clustering analysis
HMDB Human Metabolome Database
HRMS High-resolution mass spectrometry
KEGG Kyoto Encyclopedia of Genes and Genome
LC-MS/MS Liquid chromatography–tandem mass spectrometry analysis
LOOCV leave-one-out cross-validation
MS Mass Spectrometry
PC Principal component
PCA Principal component analysis
RFE Recursive feature elimination
SESI Secondary electrospray ionization
SESI-MS Secondary electrospray ionization-mass spectrometry
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SESI-HRMS Secondary electrospray ionization-high resolution mass spectrometry
SVM Support vector machine algorithm
SVM-RFE Recursive feature elimination with SVM
VOC Volatile organic compound
TIC Total ion chromatogram
TOF Time of flight
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